Please wait a minute...
金属学报  2010, Vol. 46 Issue (10): 1192-1199    DOI: 10.3724/SP.J.1037.2010.00177
  论文 本期目录 | 过刊浏览 |
冷却速率对GWZ1032K合金中14H-LPSO结构形成的影响
张松1,2,袁广银1,2,卢晨1,2,丁文江1,2
1.上海交通大学材料科学与工程学院 轻合金精密成型国家工程研究中心, 上海 200240
2.上海交通大学材料科学与工程学院 金属复合材料国家重点实验室, 上海 200240
EFFECT OF COOLING RATE ON THE FORMATION OF 14H–LPSO STRUCTURE IN GWZ1032K ALLOY
ZHANG Song1,2, YUAN Guangyin1,2, LU Chen1,2, DING Wenjiang1,2
1. Light Alloy Net Forming National Engineering Research Center, School of Materials Science and Engineering, Shanghai
Jiao Tong University, Shanghai 200240
2, The State Key Laboratory of Metal Matrix Composite, School of Materials Science and Engineering, Shanghai
Jiao Tong University, Shanghai 200240
引用本文:

张松 袁广银 卢晨 丁文江. 冷却速率对GWZ1032K合金中14H-LPSO结构形成的影响[J]. 金属学报, 2010, 46(10): 1192-1199.
, , , . EFFECT OF COOLING RATE ON THE FORMATION OF 14H–LPSO STRUCTURE IN GWZ1032K ALLOY[J]. Acta Metall Sin, 2010, 46(10): 1192-1199.

全文: PDF(4319 KB)  
摘要: 采用金属型铸造和慢速凝固, 在不同冷却速率下制备了Mg-10Gd-3Y-1.8Zn-0.5Zr(质量分数, %) (GWZ1032K)合金. 采用SEM, TEM和XRD研究了冷却速率不同的GWZ1032K 合金的组织和相构成. 在GWZ1032K合金中, α-Mg基体中的层片状14H-LPSO结构随着冷却速率的下降而增加, 在冷却速率为0.005℃/s的试样中充满了整个晶粒;随着合金冷却速率降低, GWZ1032K合金中晶界第二相分别由5℃/s时的(Mg, Zn)3RE相转变为0.5 和0.1℃/s时的(Mg, Zn)3RE相和14H-LPSO结构的χ相共存;在0.01和0.005℃/s时只有14H-LPSO结构的$\chi$相. 结果显示在接近于平衡凝固的缓慢冷速条件下, 更容易形成具有稳定结构的层片状14H-LPSO结构和χ相.在冷却速率为0.5和0.1℃/s时, (Mg, Zn)3RE共晶相和χ相共存, (Mg, Zn)3RE共晶相和χ相的位向关系为 [110]χ phase//[223](Mg, Zn)3RE和∠g(001)χ phase g(110) (Mg, Zn)3RE=8.4°.
关键词 14H-LPSO结构 冷却速率 Mg-Gd-Y-Zn合金 χ相    
Abstract:Mg–10Gd–3Y–1.8Zn–0.5Zr (mass fraction, %) (GWZ1032K) alloys were fabricated by permanent mold casting and slow solidification with different cooling rates. The microstructures of the GWZ1032K alloys with different cooling rates were investigated by SEM, TEM and XRD. Two kinds of LPSO structure were observed, include lamellar 14H–LPSO structure in the grain interior and χ phase at the grain boundaries. Lamellar 14H–LPSO structure in α–Mg matrix propagated in the matrix with the decease of solidification rate, and filled the whole grain in the alloy solidified at 0.005 ℃/s. The second phase in the alloys also changed with deceasing the solidification rates, there are (Mg, Zn)3RE compounds only when solidification rate is 5 ℃/s, (Mg, Zn)3RE compounds and 14H–LPSO structured  phase when solidification rates are 0.5 and 0.1 ℃/s, and 14H–LPSO structured χ phase only when solidification rates are 0.01 and 0.005 ℃/s. It was detected that (Mg, Zn)3RE compounds and χ phase existed simultaneously at the grain boundaries in the alloys at solidification rates of 0.5 ℃/s and 0.1℃/s, and the orientation relationship between them was determined to be [110] χphase//[223](Mg,Zn)3RE and ∠g(001)χ phase g(110) (Mg, Zn)3RE=8.4°.
Key words14H-LPSO structure    solidification rate    Mg-Gd-Y-Zn alloy    &chi    phase
收稿日期: 2010-04-14     
基金资助:

上海市基础研究重点项目08JC141412200, 新世纪优秀人才支持计划项目NCET-07-0554和江苏省先进金属材料高技术研究重点实验室开放课题项目AMM200903资助

作者简介: 张松, 男, 1983年生, 博士生
[1] Polmear I J. Mater Trans, 1996; 37: 12 [2] Froes F H, Eliezer D, Aghion E. JOM, 1998; 50: 30 [3] Kawamura Y, Hayashi K, Inoue A, Masumoto T. Mater Trans, 2001; 42: 1172 [4] Inoue A, Kawamura Y, Matsushita M, Hayashi K, Koike J. J Mater Res, 2001; 16: 1894 [5] Homma T, Kunito N, Kamado S. Scr Mater, 2009; 61: 644 [6] Kawamura Y, kasahara Y, Izumi S, Yamasaki M. Scr Mater, 2006; 55: 453 [7] YamasakiM, SasakiM, NishijimaM, Hiraga K, Kawamura Y. Acta Mater, 2007; 55: 6798 [8] Yamasaki M, Anan T, Yoshimoto S, Kawamura Y. Scr Mater, 2005; 53: 799 [9] Honma T, Ohkubo T, Kamado S, Hono K. Acta Mater, 2007; 55: 4137 [10] Wu Y J, Zeng X Q, Lin D L, Peng L M, Ding W J. J Alloys Compd, 2009; 477: 193 [11] Wu Y J, Lin D L, Zeng X Q, Peng L M, Ding W J. J Mater Sci, 2009; 44: 1607 [12] He S M, Zeng X Q, Peng L M, Guo X W, Chang J W, Ding W J. Mater Sci Forum, 2007; 101: 546 [13] Perminov V P. Powder Metall Met Ceram, 1967; 6: 409 [14] Liu X H, Johnson W L. J Appl Phys, 1995; 78: 6514 [15] Zhu Y M, Morton A J, Nie J F. Acta Mater, 2010; 58: 2936 [16] Itoi T, Seimiya T, Kawamura Y, Hirohashi M. Scr Mater, 2004; 51: 107 [17] Ping D H, Hono K, Kawamura Y, Inoue A. Philos Mag Lett, 2002; 82: 543 [18] Ping D H, Hono K, Nie J F. Scr Mater, 2003; 48: 1017 [19] Datta A, Waghmare U V, Ramamurty U. Acta Mater, 2009; 11: 2531 [20] Ding W J, Wu Y J, Peng L M, Zeng X Q, Yuan GY. J Mater Res, 2009; 24: 1842
[1] 王法, 江河, 董建新. 高合金化GH4151合金复杂析出相演变行为[J]. 金属学报, 2023, 59(6): 787-796.
[2] 张月鑫, 王举金, 杨文, 张立峰. 冷却速率对管线钢中非金属夹杂物成分演变的影响[J]. 金属学报, 2023, 59(12): 1603-1612.
[3] 李闪闪, 陈云, 巩桐兆, 陈星秋, 傅排先, 李殿中. 冷速对高碳铬轴承钢液析碳化物凝固析出机制的影响[J]. 金属学报, 2022, 58(8): 1024-1034.
[4] 王希,刘仁慈,曹如心,贾清,崔玉友,杨锐. 冷却速率对β凝固γ-TiAl合金硼化物和室温拉伸性能的影响[J]. 金属学报, 2020, 56(2): 203-211.
[5] 李亚强, 刘建华, 邓振强, 仇圣桃, 张佩, 郑桂芸. 15CrMoG钢包晶凝固特征与机制[J]. 金属学报, 2020, 56(10): 1335-1342.
[6] 郭军力, 文光华, 符姣姣, 唐萍, 侯自兵, 谷少鹏. 冷却速率对包晶钢凝固过程中包晶转变收缩的影响[J]. 金属学报, 2019, 55(10): 1311-1318.
[7] 张可, 李昭东, 隋凤利, 朱正海, 章小峰, 孙新军, 黄贞益, 雍岐龙. 冷却速率对Ti-V-Mo复合微合金钢组织转变及力学性能的影响[J]. 金属学报, 2018, 54(1): 31-38.
[8] 谷倩倩, 阮莹, 朱海哲, 闫娜. 冷却速率对急冷Fe-Al-Nb三元合金凝固组织形成的影响[J]. 金属学报, 2017, 53(6): 641-647.
[9] 胡小锋,杜瑜宾,闫德胜,戎利建. Cu的析出及其对FeCrMoCu合金阻尼性能和力学性能的影响[J]. 金属学报, 2017, 53(5): 601-608.
[10] 刘少军, 杨光昱, 介万奇. Mg-Zn-Gd三元铸造镁合金的自由凝固路径选择*[J]. 金属学报, 2015, 51(5): 580-586.
[11] 牟娟,王东梅,王沿东. 冷却速率和高径比对钛基非晶复合材料力学性能的影响*[J]. 金属学报, 2015, 51(12): 1435-1440.
[12] 徐洋, 孙明雪, 周砚磊, 刘振宇. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51(1): 31-39.
[13] 李俊杰,Godfrey Andrew,刘伟. 奥氏体化与冷却速率对过共析钢组织的影响[J]. 金属学报, 2013, 49(5): 583-592.
[14] 张龙,张曙光,余建定,李建国. 气动悬浮冷速控制及Al-7.7Ca共晶合金的凝固组织[J]. 金属学报, 2013, 29(4): 451-456.
[15] 王震,曹,磊,刘仁慈,刘冬,崔玉友,杨,锐. 冷却速率对Ti3Al合金组织和拉伸性能的影响[J]. 金属学报, 2013, 49(11): 1487-1492.