Please wait a minute...
金属学报  2010, Vol. 46 Issue (5): 629-633    DOI: 10.3724/SP.J.1037.2009.00821
  论文 本期目录 | 过刊浏览 |
Ti36Zr40Ni20Pd4准晶的热稳定性与室温储氘性能
黄火根1); 陈亮2); 李嵘2);  罗德礼2)
1) 表面物理与化学国家重点实验室; 绵阳 621907 2) 中国工程物理研究院; 绵阳 621900
THERMAL STABILITY AND DEUTERIUM ABSORPTION AT ROOM TEMPERATURE OF Ti36Zr40Ni20Pd4 QUASICRYSTAL
HUANG Huogen1); CHEN Liang2); LI Rong2); LUO Deli2)
1) National Key Lab for Surface Physics and Chemistry; Mianyang 621907 2) China Academy of Engineering Physics; Mianyang 621900
引用本文:

黄火根 陈亮 李嵘 罗德礼. Ti36Zr40Ni20Pd4准晶的热稳定性与室温储氘性能[J]. 金属学报, 2010, 46(5): 629-633.
, , . THERMAL STABILITY AND DEUTERIUM ABSORPTION AT ROOM TEMPERATURE OF Ti36Zr40Ni20Pd4 QUASICRYSTAL[J]. Acta Metall Sin, 2010, 46(5): 629-633.

全文: PDF(754 KB)  
摘要: 

在Ti40Zr40Ni20准晶合金中掺Pd制备了Ti36Zr40Ni20Pd4准晶合金, 利用X射线衍射(XRD)、金相(OM)、光电子能谱(XPS)、气固反应等对其组织结构和吸氘特性进行了研究. 结果表明, 在吸铸态下该合金形成了二十面体准晶相, 准晶格常数为0.5174 nm. 其热力学稳定性较差, 约400 ℃时转变为tI-Zr2Ni与C14-TiZrNiPd晶体相. 室温下, 其吸氘能力为11.0 mmol/g(相当于 2.2%的吸氢质量分数), 吸氘速率达到0.030 s-1, 准晶结构不变但准晶格膨胀5.5%. 添加的Pd起到催化作用, 与初始合金相比, Ti36Zr40Ni20Pd4准晶合金的活化与储氘能力明显提高.

关键词 Ti-Zr-Ni-Pd合金准晶催化    
Abstract

Ti-Zr-Ni quasicrystals can absorb a large amount of hydrogen, so have strong application potential in the hydrogen energy field and international thermonuclear experimental reactor (ITER) program. However, the hydrogenation of the quasicrystals is often hindered and even poisoned due to their surface oxidation. To inhibit the oxidation, Pd has been selected, because of its catalysis to hydrogen absorption, as a minor alloying element in Ti-Zr-Ni quasicrystals. In this paper, the Ti36Zr40Ni20Pd4 alloy was designed and its thermal stability and room--temperature deuteration were studied with XRD, DSC, OM, XPS and gas--solid reaction measurement apparatus. The XRD result shows that a single icosahedral quasicrystal (IQC) phase with a quasilattice constant aR=0.5174 nm was formed in the alloy by suction-casting method, which is metastable and transforms to conventional crystals tI-Zr2Ni and C14-TiZrNiPd (MgZn2 type) phase at about 400℃. The deuteration test below the transformed temperature indicates that the alloy can absorb deuterium up to a large concentration of 11.0 mmol/g (corresponding to 2.2%H, mass fraction) at room temperature after vacuuming and heating activation without any surface treatment. Once fully activated, the IQC can load deuterium rapidly with an absorption rate of\linebreak 0.030 s-1 at ambient temperature, and has the quasilattice constant with about 5.5% expansion after two absorption cycles. The Ti36Zr40Ni20Pd4 IQC has better activation property and hydrogen capacity than the Ti40Zr40Ni20 IQC, which shows the catalyzing function of Pd.

Key wordsTi-Zr-Ni-Pd alloy    quasicrystal    deuterium    catalyzing
收稿日期: 2009-12-10     
基金资助:

中国工程物理研究院科学技术发展基金资助项目2007A07002

作者简介: 黄火根, 男, 1980年生, 工程师, 博士生

[1] Bogdanovic B, Schwickardi M. Appl Phys, 2001; 72A: 221
[2] Chen P, Xiong Z T, Luo J Z, Lin J Y, Tan K L. Nature, 2002; 420: 302
[3] Xiong Z T, Yong C K, Wu G T, Chen P, Shaw W, Karkamkar A, Autrey T, Jones M O, Johnson S R, Edwards P P, David W I F. Nat Mater, 2008; 7: 138
[4] Feng K M. Chin Nucl Power, 2009; 2: 212
(冯开明. 中国核电, 2009; 2: 212)

[5] Gibbons P C, Hennig R G, Huett V T, Kelton K F. J Non–Cryst Solids, 2004; 334: 461
[6] Kelton K F, Hartzell J J, Hennig R G, Huett V T, Takasaki A. Philos Mag, 2006; 86: 957
[7] Liu B Z, Liu D M, Wu Y M, Li L Q, Wang L M. Int J Hydro Energy, 2007; 32: 2429
[8] Liu B Z, Wu Y M, Wang L M. J Power Source, 2006; 162: 713
[9] Liu B Z, Wu Y M, Wang L M. J Power Source, 2006; 159: 1458
[10] Liu B Z, Wu Y M, Wang L M. Int J Hydrogen Energy, 2006; 31: 1394
[11] Liu B Z, Wu Y M, Wang L M. Rare Met, 2007; 26: 440
[12] Takasaki A, Huett V T, Kelton K F. J Non–Cryst Solids, 2004; 334: 457
[13] Takasaki A, Kelton K F. Int J Hydrogen Energy, 2006; 31: 183
[14] Hennig R G, Majzoub E H, Carlsson A E, Kelton K F, Henley C L, Yelon W B, Misture S. Mater Sci Eng, 2000; 294A: 361
[15] Kim J Y, Hennig R, Huett V T, Gibbons P C, Kelton K F. J Alloys Compd, 2005; 404: 388
[16] Huang H G, Dong P, Yin C, Zhang P C, Bai B, Dong C. Int J Hydrogen Energy, 2008; 33: 722
[17] Huang H G, Li R, Yin C, Zheng S T, Zhang P C. Int J Hydrogen Energy, 2008; 33: 4607
[18] Liu B Z, Liu J J, Mi G F, Zhang Z, Wu Y M, Wang L M. J Alloys Compd, 2009; 475: 881
[19] Liu B Z, Zhang Y D, Mi G F, Zhang Z, Wang L M. Int J Hydrogen Energy, 2009; 34: 6925
[20] Huang H G, Yin C, Wu J, Zhang P C. Chin J Nonferrous Met, 2008; 18: 108
(黄火根, 银陈, 吴江, 张鹏程. 中国有色金属学报, 2008; 18: 108)

[21] Cahn J W, Shechtman D, Gratias D. J Mater Res, 1986; 1: 13
[22] Qiang J B, Wang Y M, Wang D H, Dong C. Rare Met Mater Eng, 2004; 33: 949
(羌建兵, 王英敏, 王德和, 董闯. 稀有金属材料与工程, 2004; 33: 949)

[23] Huang H G, Jia J P, Li R. Acta Metall Sin, 2009; 45: 1272
(黄火根, 贾建平, 李嵘. 金属学报, 2009; 45: 1272)
[24] Hirooka Y, Miyake M, Sano T. J Nucl Mater, 1981; 96: 227
[25] Huang L J, Yu B X, Gao S J. Met Funct Mater, 1998; 5: 124
(黄利军, 虞炳西, 高树浚. 金属功能材料, 1998; 5: 124)
[26] Wang W W, Long X G. J Nucl Radiochem, 2007; 29: 80
(王伟伟, 龙兴贵. 核化学与放射化学, 2007; 29: 80)
[27] Coddens G, Viano A M, Gibbons P C, Kelton K F, Kramer M J. Solid State Comm, 1997; 104: 179
[28] Faust K R, Pfitsch D W, Stojanovich N A, McDowell A F, Adolphi N L, Majzoub E H, Kim J Y, Gibbons P C, Kelton K F. Phys Rev, 2000; 62B: 11444

[1] 杜宗罡, 徐涛, 李宁, 李文生, 邢钢, 巨璐, 赵利华, 吴华, 田育成. Ni-Ir/Al2O3 负载型催化剂的制备及其用于水合肼分解制氢性能[J]. 金属学报, 2023, 59(10): 1335-1345.
[2] 徐文策, 崔振铎, 朱胜利. 开孔多孔金属材料在电催化及生物医用领域的研究进展[J]. 金属学报, 2022, 58(12): 1527-1544.
[3] 陈永君, 白妍, 董闯, 解志文, 燕峰, 吴迪. 基于有限元分析的准晶磨料强化不锈钢表面钝化行为[J]. 金属学报, 2020, 56(6): 909-918.
[4] 张霞, 宋扬, 王誉, 纪逯鹤, 杨媚, 孟皓. 超声共混合成Ni(HNCN)2/BiVO4复合可见光催化剂[J]. 金属学报, 2020, 56(11): 1551-1557.
[5] 徐秀月, 李艳辉, 张伟. Fe(Pt, Ru)B非晶带材脱合金制备纳米多孔PtRuFe及其甲醇电催化性能[J]. 金属学报, 2020, 56(10): 1393-1400.
[6] 丘玉萍, 戴豪, 戴洪斌, 王平. 适于水合肼分解制氢的Ni-Pt/CeO2催化剂的表面组分调控[J]. 金属学报, 2018, 54(9): 1289-1296.
[7] 范东军, 陆光达, 张桂凯, 包锦春, 杨飞龙, 向鑫, 陈长安. 氘、氚在RAFM钢中的扩散渗透研究[J]. 金属学报, 2018, 54(4): 519-526.
[8] 秦高梧, 谢红波, 潘虎成, 任玉平. 一类介于晶体与准晶体之间的有序结构[J]. 金属学报, 2018, 54(11): 1490-1502.
[9] 吉忠海, 张莉莉, 汤代明, 刘畅, 成会明. 金属催化剂控制生长单壁碳纳米管研究进展[J]. 金属学报, 2018, 54(11): 1665-1682.
[10] 荣凤鸣, 王誉, 张霞. 基于氰胺锌的复合光催化剂的结构与可见光催化性能[J]. 金属学报, 2018, 54(1): 76-82.
[11] 张婷婷,祁阳,刘刚,刘鸣华. 形貌可控NaNbO3的生长机理和光催化性能[J]. 金属学报, 2017, 53(3): 376-384.
[12] 钟玉洁,戴洪斌,王平. 水合肼制氢Ni-Pt/La2O3催化剂研制及其反应动力学研究*[J]. 金属学报, 2016, 52(4): 505-512.
[13] 樊志斌, 林小娉, 董允, 叶杰, 李婵, 李博. Mg96.17Zn3.15Y0.5Zr0.18合金高压下固溶处理时效硬化研究*[J]. 金属学报, 2016, 52(12): 1491-1496.
[14] 张诚,宋西平,刘敬茹,杨云,尤力. 氘含量对Zr-4合金显微组织和力学性能的影响*[J]. 金属学报, 2016, 52(12): 1572-1578.
[15] 蒋宗佑,赵宗彦. 水分子在Au和Cu及其合金表面的吸附与分解DFT计算研究*[J]. 金属学报, 2016, 52(12): 1586-1594.