First-Principles Simulation of Hydrogen Capture Behavior at the bcc-Fe/fcc-Fe Phase Interface in Steel " /> 钢中bcc-Fe/fcc-Fe相界面的氢捕获行为的第一性原理模拟
Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2025.00046
  本期目录 | 过刊浏览 |
钢中bcc-Fe/fcc-Fe相界面的氢捕获行为的第一性原理模拟

任奇傲1  成 林1,2  许泽岷2  夏锴2  胡丞杨2  吴开明1,2

1 武汉科技大学 理学院  武汉 430065

2 武汉科技大学 高性能钢铁材料及其应用省部共建协同创新中心  武汉 430081

First-Principles Simulation of Hydrogen Capture Behavior at the bcc-Fe/fcc-Fe Phase Interface in Steel

REN Qiao 1, CHENG Lin 1,2, XU Zemin 2, XIA Kai 2, HU Chengyang 2, WU Kaiming 1,2

1 College of Science, Wuhan University of Science and Technology, Wuhan 430065, China

2 Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China

引用本文:

任奇傲 成林 许泽岷 夏锴 胡丞杨 吴开明. 钢中bcc-Fe/fcc-Fe相界面的氢捕获行为的第一性原理模拟[J]. 金属学报, 10.11900/0412.1961.2025.00046.

全文: PDF(1640 KB)  
摘要: 
bcc和fcc复相共存是第三代先进高强度钢实现优异强塑性匹配的主要组织控制手段。bcc-Fe/fcc-Fe相界面作为该类型钢的重要组织缺陷,是H原子的重要捕获位点。本工作基于第一性原理计算研究了H原子在具有K-S取向bcc-Fe/fcc-Fe相界面的捕获行为以及代表性合金元素对其的影响。研究表明,H倾向偏聚于相界面处fcc侧,且H与界面的结合能为34.5 kJ/mol。Cr、Mo、Tc在相界面的偏聚增加了相界面强度,抑制了H在相界面的捕获行为;Ni偏聚降低了相界面稳定性,而V偏聚促进了H在相界面偏聚;同时,H的Bader体积是评估相界面氢捕获能力的有效描述符。
关键词 高强钢BCC/FCC相界面第一性原理计算偏聚氢脆    
Abstract
Hydrogen-induced delayed fracture is an unpredictable and extremely hazardous failure mode that often occurs suddenly under applied stress levels significantly below a material’s yield strength. This issue must be addressed to ensure the promotion and application of advanced high-strength steels (AHSSs). The development of third-generation AHSSs has transformed automotive lightweighting strategies by achieving an exceptional balance between strength and ductility through precise microstructural engineering. A key microstructural feature enabling this balance is the coexistence of bcc and fcc phases within the steel’s microstructure. The interface between bcc and fcc phases, an important microstructural defect in AHSSs, acts as a trapping site for hydrogen atoms. However, hydrogen-trapping behaviour at the bcc-Fe/fcc-Fe interface, along with the influence of alloying element segregation, remains poorly understood. In this study, the hydrogen-trapping behaviour at Kurdjumov–Sachs oriented bcc-Fe/fcc-Fe interfaces was systematically investigated using first-principles density functional theory calculations. Parameters such as the binding energy, interfacial separation work and hydrogen Bader volume were analysed to quantify the hydrogen-trapping behaviour. In addition, the effects of alloying elements on the bcc-Fe/fcc-Fe interfacial stability and hydrogen-trapping behaviours were evaluated. The results show that hydrogen atoms preferentially segregate to the fcc-Fe side of the bcc-Fe/fcc-Fe interface with a binding energy of 34.5 kJ/mol, indicating a strong tendency for interfacial trapping. Notably, the hydrogen Bader volume was found to be a reliable indicator of hydrogen-trapping behaviour at the bcc-Fe/fcc-Fe interface. Further analysis of alloying elements revealed varying effects on the bcc-Fe/fcc-Fe interface. Nb and Mn had a minimal effect on interfacial stability. V slightly increased the interfacial separation work, improving interfacial stability. Tc, Mo, and Cr significantly increased interfacial stability by increasing the interfacial separation work. Conversely, Ni decreased the interfacial separation work, thereby weakening the interfacial stability. This study provides an atomic-scale understanding of the hydrogen-trapping behaviour at the bcc/fcc interface and offers theoretical guidance for designing the chemical composition of AHSSs with enhanced resistance to hydrogen embrittlement.

Key wordsHigh strength steel    BCC/FCC phase interfaces    first-principles calculation    segregation    hydrogen embrittlement
收稿日期: 2025-02-20     
基金资助:中碳超细贝氏体钢氢扩散与氢致延迟断裂行为
[1] 杨波, 陈小亮, 史晓斌, 任伟, 高恒, 宋广生. 稀土Y掺杂V-Cr合金增塑机理及透氢性能[J]. 金属学报, 2025, 61(6): 887-899.
[2] 孟祥龙, 刘瑞良, Li D. Y.. 钽合金表面渗碳层中碳化物析出及其性能的第一性原理研究[J]. 金属学报, 2025, 61(5): 797-808.
[3] 王慧远, 孟昭元, 贾海龙, 徐新宇, 花珍铭. 新型低合金含量烘烤硬化镁合金研究进展及展望[J]. 金属学报, 2025, 61(3): 372-382.
[4] 王京京, 姚志浩, 张鹏, 赵杰, 张迈, 王蕾, 董建新, 陈迎. 镍基高温合金中S元素对基体与热障涂层界面稳定性的影响[J]. 金属学报, 2024, 60(9): 1250-1264.
[5] 周彦余, 李江旭, 刘晨, 赖俊文, 高强, 马会, 孙岩, 陈星秋. 金属间化合物Pt7Sb投影Berry相位与析氢催化关联的第一性原理计算[J]. 金属学报, 2024, 60(6): 837-847.
[6] 张宇, 吴盼, 贾东昇, 黄林科, 贾晓晴, 刘峰. 基于稳定性的第三代先进高强钢设计[J]. 金属学报, 2024, 60(2): 143-153.
[7] 杨谨菡, 闫海乐, 刘昊轩, 赵莹, 杨一俏, 赵骧, 左良. A2BTi型磁性功能合金相稳定性、磁性与力学性能的第一性原理计算和实验研究[J]. 金属学报, 2024, 60(12): 1701-1709.
[8] 赵晋彬, 王建韬, 何东昌, 李俊林, 孙岩, 陈星秋, 刘培涛. 氢化物超导体临界转变温度的机器学习模型[J]. 金属学报, 2024, 60(10): 1418-1428.
[9] 王重阳, 韩世伟, 谢峰, 胡龙, 邓德安. 固态相变和软化效应对超高强钢焊接残余应力的影响[J]. 金属学报, 2023, 59(12): 1613-1623.
[10] 侯旭儒, 赵琳, 任淑彬, 彭云, 马成勇, 田志凌. 热输入对电弧增材制造船用高强钢组织与力学性能的影响[J]. 金属学报, 2023, 59(10): 1311-1323.
[11] 金鑫焱, 储双杰, 彭俊, 胡广魁. 露点对连续退火0.2%C-1.5%Si-2.5%Mn高强钢选择性氧化及脱碳的影响[J]. 金属学报, 2023, 59(10): 1324-1334.
[12] 段慧超, 王春阳, 叶恒强, 杜奎. 纳米多孔金属表面结构与成分的三维电子层析表征[J]. 金属学报, 2023, 59(10): 1291-1298.
[13] 王硕, 王俊升. Al-Li合金中 δ′/θ′/δ复合沉淀相结构演化及稳定性的第一性原理探究[J]. 金属学报, 2022, 58(10): 1325-1333.
[14] 肖娜, 惠卫军, 张永健, 赵晓丽. 真空渗碳处理齿轮钢的氢脆敏感性[J]. 金属学报, 2021, 57(8): 977-988.
[15] 毛斐, 吕皓, 唐法威, 郭凯, 刘东, 宋晓艳. MnIn添加对SmCo7结构稳定性及磁矩影响的第一性原理计算[J]. 金属学报, 2021, 57(7): 948-958.