Please wait a minute...
金属学报    DOI: 10.11900/0412.1961.2024.00440
  本期目录 | 过刊浏览 |
累积变形对F316奥氏体不锈钢再结晶机制的影响
刘忠翰1,陈东泽1,冯伟1,侯纪新1,于云鹤1,顾春刚2,高健飞2,夏志新1

1 苏州大学 沙钢钢铁学院  苏州 215137

2 中核苏阀科技实业股份有限公司  苏州 215129

The Effect of Cumulative Deformation on the Recrystallization Mechanisms of F316 Austenitic Stainless Steel

LIU Zhonghan 1, CHEN Dongze 1, FENG Wei 1, HOU Jixin 1, YU Yunhe 1, GU Chungang 2, GAO Jianfei 2, XIA Zhixin 1

1 Shagang School of Iron and Steel, Soochow University, Suzhou 215137, China

2 SUFA Technology Industrial Co. Ltd., CNNC, Suzhou 215129, China

引用本文:

刘忠翰 陈东泽 冯伟 侯纪新 于云鹤 顾春刚 高健飞 夏志新. 累积变形对F316奥氏体不锈钢再结晶机制的影响[J]. 金属学报, 10.11900/0412.1961.2024.00440.

全文: PDF(5767 KB)  
摘要: 

大型复杂锻件成型通常依赖多道次累积变形工艺优化组织并改善力学性能。然而,该过程中再结晶机制的演化规律仍不明确。本工作以F316奥氏体不锈钢为研究对象,系统研究了变形温度、应变速率、道次间保温时间和变形量分配方式对动态再结晶(DRX)、静态再结晶(SRX)及亚动态再结晶(MDRX)行为的影响。通过热模拟实验结合EBSD技术表征不同变形条件下几何必需位错密度、晶界特征及晶粒取向的演变过程,研究累积变形对再结晶行为的影响。结果表明,高变形温度、低应变速率、较短的道次间保温时间以及较小的初始变形量、较大的最终道次变形量均有助于材料软化,降低流变应力,并促进晶粒细化和组织均匀性。SRX尽管会消耗部分变形储能,但其晶粒细化效应为后续DRX的发生提供了更多形核点;而MDRX仅消耗变形储能,导致后续DRX难以完全发生,从而易产生混晶现象。通过构建F316不锈钢累积变形储能模型,计算热变形过程中SRX和MDRX的变形储能消耗,明确后续道次中DRX的临界能量需求;并通过计算SRX晶粒细化效应引起的DRX临界能量下降,量化了SRX对后续道次DRX行为的具体贡献。

关键词 累积变形动态再结晶静态再结晶亚动态再结晶变形储能几何必需位错密度(GND)    
Abstract

The forming of large and complex forgings typically relies on multistep cumulative deformation processes that optimize microstructures and improve mechanical properties. However, the mechanisms of the recrystallization that occurs during these processes are not fully understood. This study examines the effects of deformation temperature, strain rate, inter-pass holding time, and deformation distribution on the dynamic recrystallization (DRX), static recrystallization (SRX), and metadynamic recrystallization (MDRX) behaviors of F316 austenitic stainless steel. With a combination of thermal simulation experiments and EBSD techniques, the evolution of the geometrically necessary dislocation (GND) density, grain boundary characteristics, and grain orientation under various deformation conditions was comprehensively analyzed. Increasing the deformation temperature and decreasing the strain rate facilitate DRX occurrence by reducing the critical energy. Prolonged holding time results in excessive SRX and MDRX, which depletes the stored deformation energy and hinders subsequent DRX. When the initial deformation amount is large, sufficient MDRX tends to suppress DRX activity. When the initial deformation amount is small, SRX contributes additional nucleation sites. Increasing the final pass deformation amount tends to promote DRX occurrence by preventing MDRX. Further analysis indicates that although SRX consumes part of the deformation energy, the effect of its grain refinement provides a greater number of nucleation sites for subsequent DRX. MDRX is a process of grain growth that proceeds directly from DRX grains and that consumes deformation energy, thereby suppressing subsequent DRX and potentially resulting in a mixed grain structure that would adversely affect the material’s final microstructure and properties. An accumulated deformation energy model for F316 stainless steel is established to evaluate the effects of various recrystallization processes. This model calculates the energy consumption of SRX and MDRX during hot deformation, determines the critical energy required for DRX in subsequent passes, and quantifies the specific contributions to DRX from SRX and MDRX. The findings provide theoretical support for the microstructural control and performance optimization of large forgings, thereby offering practical guidance for optimizing forging processes, especially under high-temperature and high-strain-rate conditions.

Key wordsCumulative deformation    dynamic recrystallization (DRX)    static recrystallization (SRX)    metadynamic recrystallization (MDRX)    deformation stored energy    geometrically necessary dislocation density (GND
收稿日期: 2024-12-27     
ZTFLH:  TG142.1  
基金资助:国家重点研发计划项目;国家自然科学基金项目;国家自然科学基金项目
[1] 郑德宇, 夏玉峰, 曾扬, 周杰. 水平集法模拟GH4706合金动态再结晶过程[J]. 金属学报, 2025, 61(9): 1425-1437.
[2] 张洺川, 徐勤思, 刘意, 蔡雨升, 牟义强, 任德春, 吉海宾, 雷家峰. 热压温度对TC4合金扩散连接区组织与性能的影响[J]. 金属学报, 2025, 61(8): 1183-1192.
[3] 包成利, 李豪, 胡励, 周涛, 唐明, 何曲波, 刘相果. 固溶态Mg-10Gd-6Y-1.5Zn-0.5Zr合金热加工图构建及微观组织演变[J]. 金属学报, 2025, 61(4): 632-642.
[4] 周雯慧, 熊锦涛, 黄思程, 王鹏昊, 刘勇. AZ31镁合金双峰组织形成机制及其变形行为[J]. 金属学报, 2025, 61(3): 488-498.
[5] 刘光辉, 王卫国, Rohrer Gregory S, 陈松, 林燕, 童芳, 冯小铮, 周邦新. 高温压缩变形Al-Zn-Mg-Cu合金动态再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2024, 60(9): 1165-1178.
[6] 杨瑞泽, 翟汝宗, 任少飞, 孙明月, 徐斌, 乔岩欣, 杨兰兰. 1Cr22Mn16N高氮奥氏体不锈钢塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2024, 60(7): 915-925.
[7] 陈胜虎, 王琪玉, 姜海昌, 戎利建. δ-铁素体对钠冷快堆用316KD奥氏体不锈钢热变形行为和动态再结晶的影响[J]. 金属学报, 2024, 60(3): 367-376.
[8] 李景仁, 谢东升, 张栋栋, 谢红波, 潘虎成, 任玉平, 秦高梧. 新型低合金化高强Mg-0.2Ce-0.2Ca合金挤压过程中的组织演变机理[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] 李福林, 付锐, 白云瑞, 孟令超, 谭海兵, 钟燕, 田伟, 杜金辉, 田志凌. 初始晶粒尺寸和强化相对GH4096高温合金热变形行为和再结晶的影响[J]. 金属学报, 2023, 59(7): 855-870.
[10] 娄峰, 刘轲, 刘金学, 董含武, 李淑波, 杜文博. 轧制态Mg-xZn-0.5Er合金板材组织及室温成形性能[J]. 金属学报, 2023, 59(11): 1439-1447.
[11] 吴彩虹, 冯迪, 臧千昊, 范诗春, 张豪, 李胤樹. 喷射成形AlSiCuMg合金的热变形组织演变及再结晶行为[J]. 金属学报, 2022, 58(7): 932-942.
[12] 任少飞, 张健杨, 张新房, 孙明月, 徐斌, 崔传勇. 新型Ni-Co基高温合金塑性变形连接中界面组织演化及愈合机制[J]. 金属学报, 2022, 58(2): 129-140.
[13] 姜伟宁, 武晓龙, 杨平, 顾新福, 解清阁. 热轧硅钢表层动态再结晶区形成规律及剪切织构特征[J]. 金属学报, 2022, 58(12): 1545-1556.
[14] 倪珂, 杨银辉, 曹建春, 王刘行, 刘泽辉, 钱昊. 18.7Cr-1.0Ni-5.8Mn-0.2NNi型双相不锈钢的大变形热压缩软化行为[J]. 金属学报, 2021, 57(2): 224-236.
[15] 陈文雄, 胡宝佳, 贾春妮, 郑成武, 李殿中. 热变形后Ni-30%Fe模型合金中奥氏体的亚动态软化行为[J]. 金属学报, 2020, 56(6): 874-884.