|
|
密度泛函理论软件ABACUS进展及其与深度学习算法的融合及应用 |
陈默涵1,2( ) |
1 北京大学 工学院 应用物理与技术研究中心 高能量密度物理数值模拟教育部重点实验室 北京 100871 2 北京科学智能研究院 北京 100080 |
|
Progress of the ABACUS Software for Density Functional Theory and Its Integration and Applications with Deep Learning Algorithms |
CHEN Mohan1,2( ) |
1 HEDPS, CAPT, College of Engineering, Peking University, Beijing 100871, China 2 AI for Science Institute, Beijing 100080, China |
引用本文:
陈默涵. 密度泛函理论软件ABACUS进展及其与深度学习算法的融合及应用[J]. 金属学报, 2024, 60(10): 1405-1417.
Mohan CHEN.
Progress of the ABACUS Software for Density Functional Theory and Its Integration and Applications with Deep Learning Algorithms[J]. Acta Metall Sin, 2024, 60(10): 1405-1417.
1 |
Zhang L F, Han J Q, Wang H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics [J]. Phys. Rev. Lett., 2018, 120: 143001
|
2 |
Wang H, Zhang L F, Han J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics [J]. Comput. Phys. Commun., 2018, 228: 178
|
3 |
Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev., 1964, 136: B864
|
4 |
Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140: A1133
|
5 |
Kulik H J, Hammerschmidt T, Schmidt J, et al. Roadmap on machine learning in electronic structure [J]. Electron. Struct., 2022, 4: 023004
|
6 |
Chen Y X, Zhang L F, Wang H, et al. DeePKS-kit: A package for developing machine learning-based chemically accurate energy and density functional models [J]. Comput. Phys. Commun., 2023, 282: 108520
|
7 |
Kirkpatrick J, Mcmorrow B, Turban D H P, et al. Pushing the frontiers of density functionals by solving the fractional electron problem [J]. Science, 2021, 374: 1385
doi: 10.1126/science.abj6511
pmid: 34882476
|
8 |
Li H, Tang Z C, Fu J H, et al. Deep-learning density functional perturbation theory [J]. Phys. Rev. Lett., 2024, 132: 096401
|
9 |
Li H, Wang Z, Zou N L, et al. Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation [J]. Nat. Comput. Sci., 2022, 2: 367
doi: 10.1038/s43588-022-00265-6
pmid: 38177580
|
10 |
Gong X X, Li H, Zou N L, et al. General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian [J]. Nat. Commun., 2023, 14: 2848
doi: 10.1038/s41467-023-38468-8
pmid: 37208320
|
11 |
Ellis J A, Fiedler L, Popoola G A, et al. Accelerating finite-temperature Kohn-Sham density functional theory with deep neural networks [J]. Phys. Rev., 2021, 104B: 035120
|
12 |
Fiedler L, Moldabekov Z A, Shao X C, et al. Accelerating equilibration in first-principles molecular dynamics with orbital-free density functional theory [J]. Phys. Rev. Res., 2022, 4: 043033
|
13 |
Gong W Y, Sun T, Bai H X, et al. Incorporation of density scaling constraint in density functional design via contrastive representation learning [J]. Digital Discovery, 2023, 2: 1404
|
14 |
Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
|
15 |
Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
|
16 |
Giannozzi P, Baroni S, Bonini N, et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials [J]. J. Phys. Condens. Matter, 2009, 21: 395502
|
17 |
Hutter J, Iannuzzi M, Schiffmann F, et al. CP2K: Atomistic simulations of condensed matter systems [J]. WIREs Comput. Mol. Sci., 2014, 4: 15
|
18 |
Soler J M, Artacho E, Gale J D, et al. The SIESTA method for ab initio order-N materials simulation [J]. J. Phys. Condens. Matter, 2002, 14: 2745
|
19 |
Ozaki T. Variationally optimized atomic orbitals for large-scale electronic structures [J]. Phys. Rev., 2003, 67B: 155108
|
20 |
Blum V, Gehrke R, Hanke F, et al. Ab initio molecular simulations with numeric atom-centered orbitals [J]. Comput. Phys. Commun., 2009, 180: 2175
|
21 |
Hamann D R, Schlüter M, Chiang C. Norm-conserving pseudopotentials [J]. Phys. Rev. Lett., 1979, 43: 1494
|
22 |
Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev., 1981, 23B: 5048
|
23 |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
24 |
Sun J W, Ruzsinszky A, Perdew J P. Strongly constrained and appropriately normed semilocal density functional [J]. Phys. Rev. Lett., 2015, 115: 036402
|
25 |
Perdew J P, Ernzerhof M, Burke K. Rationale for mixing exact exchange with density functional approximations [J]. J. Chem. Phys., 1996, 105: 9982
|
26 |
Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential [J]. J. Chem. Phys., 2003, 118: 8207
|
27 |
Zhang Y Z, Wang H D, Chen W J, et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models [J]. Comput. Phys. Commun., 2020, 253: 107206
|
28 |
Larsen A H, Mortensen J J, Blomqvist J, et al. The atomic simulation environment—A Python library for working with atoms [J]. J. Phys. Condens. Matter, 2017, 29: 273002
|
29 |
Togo A, Chaput L, Tadano T, et al. Implementation strategies in phonopy and phono3py [J]. J. Phys. Condens. Matter, 2023, 35: 353001
|
30 |
Mostofi A A, Yates J R, Lee Y S, et al. Wannier90: A tool for obtaining maximally-localised Wannier functions [J]. Comput. Phys. Commun., 2008, 178: 685
|
31 |
Li W, Carrete J, Katcho N A, et al. ShengBTE: A solver of the Boltzmann transport equation for phonons [J]. Comput. Phys. Commun., 2014, 185: 1747
|
32 |
Zheng Q J, Chu W B, Zhao C Y, et al. Ab initio nonadiabatic molecular dynamics investigations on the excited carriers in condensed matter systems [J]. WIREs Comput. Mol. Sci., 2019, 9: e1411
|
33 |
Lin L, Chen M H, Yang C, et al. Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion [J]. J. Phys. Condens. Matter, 2013, 25: 295501
|
34 |
Glass C W, Oganov A R, Hansen N. USPEX—Evolutionary crystal structure prediction [J]. Comput. Phys. Commun., 2006, 175: 713
|
35 |
Lin P Z, Ren X G, He L X. Efficient hybrid density functional calculations for large periodic systems using numerical atomic orbitals [J]. J. Chem. Theory Comput., 2020, 17: 222
|
36 |
Lin P Z, Ren X G, He L X. Accuracy of localized resolution of the identity in periodic hybrid functional calculations with numerical atomic orbitals [J]. J. Phys. Chem. Lett., 2020, 11: 3082
doi: 10.1021/acs.jpclett.0c00481
pmid: 32223245
|
37 |
Jin G, Pang H S, Ji Y Y, et al. PYATB: An efficient python package for electronic structure calculations using ab initio tight-binding model [J]. Comput. Phys. Commun., 2023, 291: 108844
|
38 |
Chen M H, Ko H Y, Remsing R C, et al. Ab initio theory and modeling of water [J]. Proc. Natl. Acad. Sci. USA, 2017, 114: 10846
doi: 10.1073/pnas.1712499114
pmid: 28973868
|
39 |
Peng H W, Yang Z H, Perdew J P, et al. Versatile van der Waals density functional based on a meta-generalized gradient approximation [J]. Phys. Rev., 2016, 6X: 041005
|
40 |
Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys., 1992, 64: 1045
|
41 |
Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
|
42 |
Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev., 1990, 41B: 7892(R)
|
43 |
Zhang D, Liu X Z J, Zhang X Y, et al. DPA-2: Towards a universal large atomic model for molecular and material simulation [DB/OL]. arXiv: 2312. 15492v1, 2023
|
44 |
Lin P Z, Ren X G, Liu X H, et al. Ab initio electronic structure calculations based on numerical atomic orbitals: Basic fomalisms and recent progresses [J]. WIREs Comput. Mol. Sci., 2024, 14: e1687
|
45 |
Junquera J, Paz Ó, Sánchez-Portal D, et al. Numerical atomic orbitals for linear-scaling calculations [J]. Phys. Rev., 2001, 64B: 235111
|
46 |
Chen M H, Guo G C, He L X. Systematically improvable optimized atomic basis sets for ab initio calculations [J]. J. Phys. Condens. Matter, 2010, 22: 445501
|
47 |
Chen M H, Guo G C, He L X. Electronic structure interpolation via atomic orbitals [J]. J. Phys. Condens. Matter, 2011, 23: 325501
|
48 |
Li P F, Liu X H, Chen M H, et al. Large-scale ab initio simulations based on systematically improvable atomic basis [J]. Comput. Mater. Sci., 2016, 112: 503
|
49 |
Zheng D Y, Ren X G, He L X. Accurate stress calculations based on numerical atomic orbital bases: Implementation and benchmarks [J]. Comput. Phys. Commun., 2021, 267: 108043
|
50 |
Lin P Z, Ren X G, He L X. Strategy for constructing compact numerical atomic orbital basis sets by incorporating the gradients of reference wavefunctions [J]. Phys. Rev., 2021, 103B: 235131
|
51 |
Liu Y, Ding X L, Chen M H, et al. A caveat of the charge-extrapolation scheme for modeling electrochemical reactions on semiconductor surfaces: An issue induced by a discontinuous Fermi level change [J]. Phys. Chem. Chem. Phys., 2022, 24: 15511
doi: 10.1039/d2cp00642a
pmid: 35713226
|
52 |
Zheng Y, Liu F, Nan H Q, et al. Disordered hyperuniformity in two-dimensional amorphous silica [J]. Sci. Adv., 2020, 6: eaba0826
|
53 |
Chen D Y, Liu Y, Zheng Y, et al. Disordered hyperuniform quasi-one-dimensional materials [J]. Phys. Rev., 2022, 106B: 235427
|
54 |
Jin G, He L X. Peculiar band geometry induced giant shift current in ferroelectric SnTe monolayer [J]. npj Comput. Mater., 2024, 10: 23
|
55 |
Gillen R, Maultzsch J. Family behavior and Dirac bands in armchair nanoribbons with 4-8 defect lines [J]. J. Phys. Condens. Matter., 2024, 36: 295501
|
56 |
Pang H S, Jin G, He L X. Tuning of Berry-curvature dipole in Ta-As slabs: An effective route to enhance the nonlinear Hall response [J]. Phys. Rev. Mater., 2024, 8: 043403
|
57 |
Zhao Z Z, Sun M L, Ji Y Y, et al. Efficient homojunction tin perovskite solar cells enabled by gradient germanium doping [J]. Nano Lett., 2024, 25: 5513
|
58 |
Dai Z J, Jin G, He L X. Interplay between magnetic structures and surface states in MnBi2Te4 from first-principles studies [J]. Phys. Rev., 2023, 108B: 085112
|
59 |
Zheng D Y, Shen Z X, Chen M H, et al. Retention and recycling of deuterium in liquid lithium-tin slab studied by first-principles molecular dynamics [J]. J. Nucl. Mater., 2021, 543: 152542
|
60 |
Liu X H, Zheng D Y, Ren X G, et al. First-principles molecular dynamics study of deuterium diffusion in liquid tin [J]. J. Chem. Phys., 2017, 147: 064505
|
61 |
Wang Q P, Zheng D Y, He L X, et al. Cooperative effect in a graphite intercalation compound: Enhanced mobility of AlCl4 in the graphite cathode of aluminum-ion batteries [J]. Phys. Rev. Appl., 2019, 12: 044060
|
62 |
Liu Y, Ren X G, He L X. A DFT study of energetic and structural properties of a full turn of A-form DNA under relaxed and stretching conditions [J]. J. Chem. Phys., 2019, 151: 215102
|
63 |
Liu Y, Liu X H, Chen M H. Copper-doped beryllium and beryllium oxide interface: A first-principles study [J]. J. Nucl. Mater., 2021, 545: 152733
|
64 |
Shao X C, Qu X, Liu S Y, et al. Structure evolution of chromium-doped boron clusters: Toward the formation of endohedral boron cages [J]. RSC Adv., 2019, 9: 2870
|
65 |
Liu X H, Qi Y H, Zheng D Y, et al. Diffusion coefficients of Mg isotopes in MgSiO3 and Mg2SiO4 melts calculated by first-principles molecular dynamics simulations [J]. Geochim. Cosmochim. Acta, 2018, 223: 364
|
66 |
Baer R, Neuhauser D, Rabani E. Self-averaging stochastic Kohn-Sham density-functional theory [J]. Phys. Rev. Lett., 2013, 111: 106402
|
67 |
White A J, Collins L A. Fast and universal Kohn-Sham density functional theory algorithm for warm dense matter to hot dense plasma [J]. Phys. Rev. Lett., 2020, 125: 055002
|
68 |
Liu Q R, Chen M H. Plane-wave-based stochastic-deterministic density functional theory for extended systems [J]. Phys. Rev., 2022, 106B: 125132
|
69 |
Chen T, Liu Q R, Liu Y, et al. Combining stochastic density functional theory with deep potential molecular dynamics to study warm dense matter [J]. Matter Radiat. Extremes, 2024, 9: 015604
|
70 |
Chen Y X, Zhang L F, Wang H, et al. DeePKS: A comprehensive data-driven approach toward chemically accurate density functional theory [J]. J. Chem. Theory Comput., 2021, 17: 170
doi: 10.1021/acs.jctc.0c00872
pmid: 33296197
|
71 |
Li W F, Ou Q, Chen Y X, et al. DeePKS + ABACUS as a bridge between expensive quantum mechanical models and machine learning potentials [J]. J. Phys. Chem., 2022, 126A: 9154
|
72 |
Ou Q, Tuo P, Li W F, et al. DeePKS model for halide perovskites with the accuracy of a hybrid functional [J]. J. Phys. Chem., 2023, 127C: 18755
|
73 |
Zhang P C, Gardini A T, Xu X F, et al. Intramolecular and water mediated tautomerism of solvated glycine [J]. J. Chem. Inf. Model., 2024, 64: 3599
|
74 |
Zhang L F, Lin D Y, Wang H, et al. Active learning of uniformly accurate interatomic potentials for materials simulation [J]. Phys. Rev. Mater., 2019, 3: 023804
|
75 |
Zhang D, Bi H R, Dai D Z, et al. Pretraining of attention-based deep learning potential model for molecular simulation [J]. npj Comput. Mater., 2024, 10: 94
|
76 |
Wu J, Yang J Y, Liu Y J S, et al. Universal interatomic potential for perovskite oxides [J]. Phys. Rev., 2023, 108B: L180104
|
77 |
Liu J C, Zhang X C, Chen T, et al. Machine-learning-based interatomic potentials for group IIB to VIA semiconductors: Toward a universal model [J]. J. Chem. Theory Comput., 2024, 20: 5717
|
78 |
Wang Y A, Govind N, Carter E A. Orbital-free kinetic-energy functionals for the nearly free electron gas [J]. Phys. Rev., 1998, 58B: 13465
|
79 |
Wang L W, Teter M P. Kinetic-energy functional of the electron density [J]. Phys. Rev., 1992, 45: 13196
|
80 |
Chen M H, Jiang X W, Zhuang H L, et al. Petascale orbital-free density functional theory enabled by small-box algorithms [J]. J. Chem. Theory Comput., 2016, 12: 2950
doi: 10.1021/acs.jctc.6b00326
pmid: 27145175
|
81 |
Wang Y A, Govind N, Carter E A. Orbital-free kinetic-energy density functionals with a density-dependent kernel [J]. Phys. Rev., 1999, 60B: 16350
|
82 |
Huang C, Carter E A. Nonlocal orbital-free kinetic energy density functional for semiconductors [J]. Phys. Rev., 2010, 81B: 045206
|
83 |
Huang C, Carter E A. Transferable local pseudopotentials for magnesium, aluminum and silicon [J]. Phys. Chem. Chem. Phys., 2008, 10: 7109
doi: 10.1039/b810407g
pmid: 19039345
|
84 |
Sun L, Chen M H. Machine learning based nonlocal kinetic energy density functional for simple metals and alloys [J]. Phys. Rev., 2024, 109B: 115135
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|