Please wait a minute...
金属学报  2024, Vol. 60 Issue (10): 1405-1417    DOI: 10.11900/0412.1961.2024.00182
  综述 本期目录 | 过刊浏览 |
密度泛函理论软件ABACUS进展及其与深度学习算法的融合及应用
陈默涵1,2()
1 北京大学 工学院 应用物理与技术研究中心 高能量密度物理数值模拟教育部重点实验室 北京 100871
2 北京科学智能研究院 北京 100080
Progress of the ABACUS Software for Density Functional Theory and Its Integration and Applications with Deep Learning Algorithms
CHEN Mohan1,2()
1 HEDPS, CAPT, College of Engineering, Peking University, Beijing 100871, China
2 AI for Science Institute, Beijing 100080, China
引用本文:

陈默涵. 密度泛函理论软件ABACUS进展及其与深度学习算法的融合及应用[J]. 金属学报, 2024, 60(10): 1405-1417.
Mohan CHEN. Progress of the ABACUS Software for Density Functional Theory and Its Integration and Applications with Deep Learning Algorithms[J]. Acta Metall Sin, 2024, 60(10): 1405-1417.

全文: PDF(2076 KB)   HTML
摘要: 

基于量子力学基本原理的密度泛函理论(DFT)可以有效预测材料性质,如今它在物理、化学、材料、生物等领域的研究工作中已得到广泛应用。随着对材料领域的深入研究,进一步提升DFT的精度和效率已成为迫切需求,但精度和效率往往不可兼得。近年来,在AI for Science理念的引领下,基于深度学习的电子结构计算方法迅速发展,有望解决电子结构计算中精度和效率不能两全的困境。然而,只有稳定可靠的DFT软件平台才能保证深入研究和持续推动AI辅助电子结构计算方法的广泛应用,这既充满挑战又蕴含机遇。在此背景下,本文主要从物理模型、深度学习算法和软件开发3方面介绍国产开源DFT软件ABACUS (atomic-orbital based ab-initio computation at UStc,中文名原子算筹)从开发2.2版本(2022年4月发布)到发布3.7版本(2024年7月发布)期间的进展及其与深度学习算法的融合和应用。

关键词 ABACUS密度泛函理论开源软件深度学习计算材料科学    
Abstract

Density functional theory (DFT), grounded in the fundamental principles of quantum mechanics, effectively predicts material properties and is now widely used across various research disciplines such as physics, chemistry, materials science, and biology. As research in materials science advances, there is an urgent need to further enhance the accuracy and efficiency of DFT. However, improving accuracy and efficiency is often challenging because these goals can be mutually exclusive. Recently, guided by the concept of AI for science, deep learning-based electronic structure calculation methods have rapidly emerged, offering potential solutions to resolve this accuracy-efficiency dilemma. Nonetheless, developing a stable and reliable DFT software platform remains a substantial challenge in exploring and expanding the use of AI-assisted methods on a broader scale. This paper introduces the open-source DFT package ABACUS (atomic-orbital based ab-initio computation at UStc), focusing on its physical models, deep learning algorithms, and software development aspects. The present discussion emphasizes the progress of the open-source package, highlighting its integration with deep learning algorithms and its evolution from version 2.2 (released in April 2022) to version 3.7 (released in July 2024).

Key wordsABACUS    density functional theory    open-source software    deep learning    computational materials science
收稿日期: 2024-05-29     
ZTFLH:  O469  
基金资助:国家自然科学基金项目(12122401,12135002)
通讯作者: 陈默涵,mohanchen@pku.edu.cn,主要从事计算物理研究
Corresponding author: CHEN Mohan, Tel: (010)62757475, E-mail: mohanchen@pku.edu.cn
作者简介: 陈默涵,男,1985年出生,博士
图1  实现于原子算筹(ABACUS)中的DeePKS方法可学习到高阶泛函的精度。此外,该方法还具有较高计算效率
图2  采用ABACUS训练的半导体势函数大模型DP-Semi,可用于模拟半导体的熔点等性质[77]
图3  基于深度学习的电子动能密度泛函发展及其在合金中的应用[84]
Date of releasing ABACUSVersionContent
2022.04.08v2.2Version 2.2 went through 3,200 commit modifications on GitHub from version 2.1, and the development team includes developers from various domestic research institutions

2022.07.01

v2.3

Version 2.3 incorporates new plane wave generation and parallel modules, enhancing support for parallel computing with plane wave basis sets; the functionalities of the stochastic wave function density functional theory method have been released

2022.10.01

v3.0

Version 3.0 has been released with the deep learning-based DeePKS functional approach based on periodic boundary conditions. Interfaces with the machine learning potential function method DeePMD-kit and the DP-GEN method have been released, as well as interfaces with the DeepH method for constructing Hamiltonians of electronic systems through machine learning

2023.01.01

v3.1

Version 3.1 has been released with support for GPU and domestic DCU hardware in plane-wave basis set solutions for the Kohn-Sham equations, and introduces new features for the computation of solid-liquid interfaces
2023.04.01v3.2Version 3.2 has been released with an interface for Hefei-NAMD software. The coverage of unit tests has increased to 60%, and the total coverage is now 76%

2023.07.13

v3.3

Version 3.3 introduces an interface for calculating hybrid functionals with LibRI, and an interface with ShengBTE software for conducting material thermal conductivity calculations

2023.10.07

v3.4

Version 3.4 primarily supports the DPA method, a machine learning potential function for universal large models, and has reconstructed core algorithms such as more efficient and reliable numerical atomic orbital two-center integrals

2023.12.29

v3.5

Version 3.5 improved the algorithm for charge mixing and supported ultrasoft pseudopotentials for plane-wave basis sets, with targeted code development and optimization for three practical application scenarios: semiconductors, alloys, and batteries
2024.04.01v3.6Version 3.6 has released a more stable and reliable DFT + U algorithm function and further optimized the program's computational performance on Sunway DCU hardware
2024.07.01v3.7Version 3.7 has further supported the OpenLAM Large Atom Model project on a larger scale
表1  从2022年4月到2024年7月ABACUS软件发布的版本号和主要内容
1 Zhang L F, Han J Q, Wang H, et al. Deep potential molecular dynamics: A scalable model with the accuracy of quantum mechanics [J]. Phys. Rev. Lett., 2018, 120: 143001
2 Wang H, Zhang L F, Han J Q, et al. DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics [J]. Comput. Phys. Commun., 2018, 228: 178
3 Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev., 1964, 136: B864
4 Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140: A1133
5 Kulik H J, Hammerschmidt T, Schmidt J, et al. Roadmap on machine learning in electronic structure [J]. Electron. Struct., 2022, 4: 023004
6 Chen Y X, Zhang L F, Wang H, et al. DeePKS-kit: A package for developing machine learning-based chemically accurate energy and density functional models [J]. Comput. Phys. Commun., 2023, 282: 108520
7 Kirkpatrick J, Mcmorrow B, Turban D H P, et al. Pushing the frontiers of density functionals by solving the fractional electron problem [J]. Science, 2021, 374: 1385
doi: 10.1126/science.abj6511 pmid: 34882476
8 Li H, Tang Z C, Fu J H, et al. Deep-learning density functional perturbation theory [J]. Phys. Rev. Lett., 2024, 132: 096401
9 Li H, Wang Z, Zou N L, et al. Deep-learning density functional theory Hamiltonian for efficient ab initio electronic-structure calculation [J]. Nat. Comput. Sci., 2022, 2: 367
doi: 10.1038/s43588-022-00265-6 pmid: 38177580
10 Gong X X, Li H, Zou N L, et al. General framework for E(3)-equivariant neural network representation of density functional theory Hamiltonian [J]. Nat. Commun., 2023, 14: 2848
doi: 10.1038/s41467-023-38468-8 pmid: 37208320
11 Ellis J A, Fiedler L, Popoola G A, et al. Accelerating finite-temperature Kohn-Sham density functional theory with deep neural networks [J]. Phys. Rev., 2021, 104B: 035120
12 Fiedler L, Moldabekov Z A, Shao X C, et al. Accelerating equilibration in first-principles molecular dynamics with orbital-free density functional theory [J]. Phys. Rev. Res., 2022, 4: 043033
13 Gong W Y, Sun T, Bai H X, et al. Incorporation of density scaling constraint in density functional design via contrastive representation learning [J]. Digital Discovery, 2023, 2: 1404
14 Kresse G, Furthmüller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Phys. Rev., 1996, 54B: 11169
15 Kresse G, Furthmüller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
16 Giannozzi P, Baroni S, Bonini N, et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials [J]. J. Phys. Condens. Matter, 2009, 21: 395502
17 Hutter J, Iannuzzi M, Schiffmann F, et al. CP2K: Atomistic simulations of condensed matter systems [J]. WIREs Comput. Mol. Sci., 2014, 4: 15
18 Soler J M, Artacho E, Gale J D, et al. The SIESTA method for ab initio order-N materials simulation [J]. J. Phys. Condens. Matter, 2002, 14: 2745
19 Ozaki T. Variationally optimized atomic orbitals for large-scale electronic structures [J]. Phys. Rev., 2003, 67B: 155108
20 Blum V, Gehrke R, Hanke F, et al. Ab initio molecular simulations with numeric atom-centered orbitals [J]. Comput. Phys. Commun., 2009, 180: 2175
21 Hamann D R, Schlüter M, Chiang C. Norm-conserving pseudopotentials [J]. Phys. Rev. Lett., 1979, 43: 1494
22 Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron systems [J]. Phys. Rev., 1981, 23B: 5048
23 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
24 Sun J W, Ruzsinszky A, Perdew J P. Strongly constrained and appropriately normed semilocal density functional [J]. Phys. Rev. Lett., 2015, 115: 036402
25 Perdew J P, Ernzerhof M, Burke K. Rationale for mixing exact exchange with density functional approximations [J]. J. Chem. Phys., 1996, 105: 9982
26 Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential [J]. J. Chem. Phys., 2003, 118: 8207
27 Zhang Y Z, Wang H D, Chen W J, et al. DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models [J]. Comput. Phys. Commun., 2020, 253: 107206
28 Larsen A H, Mortensen J J, Blomqvist J, et al. The atomic simulation environment—A Python library for working with atoms [J]. J. Phys. Condens. Matter, 2017, 29: 273002
29 Togo A, Chaput L, Tadano T, et al. Implementation strategies in phonopy and phono3py [J]. J. Phys. Condens. Matter, 2023, 35: 353001
30 Mostofi A A, Yates J R, Lee Y S, et al. Wannier90: A tool for obtaining maximally-localised Wannier functions [J]. Comput. Phys. Commun., 2008, 178: 685
31 Li W, Carrete J, Katcho N A, et al. ShengBTE: A solver of the Boltzmann transport equation for phonons [J]. Comput. Phys. Commun., 2014, 185: 1747
32 Zheng Q J, Chu W B, Zhao C Y, et al. Ab initio nonadiabatic molecular dynamics investigations on the excited carriers in condensed matter systems [J]. WIREs Comput. Mol. Sci., 2019, 9: e1411
33 Lin L, Chen M H, Yang C, et al. Accelerating atomic orbital-based electronic structure calculation via pole expansion and selected inversion [J]. J. Phys. Condens. Matter, 2013, 25: 295501
34 Glass C W, Oganov A R, Hansen N. USPEX—Evolutionary crystal structure prediction [J]. Comput. Phys. Commun., 2006, 175: 713
35 Lin P Z, Ren X G, He L X. Efficient hybrid density functional calculations for large periodic systems using numerical atomic orbitals [J]. J. Chem. Theory Comput., 2020, 17: 222
36 Lin P Z, Ren X G, He L X. Accuracy of localized resolution of the identity in periodic hybrid functional calculations with numerical atomic orbitals [J]. J. Phys. Chem. Lett., 2020, 11: 3082
doi: 10.1021/acs.jpclett.0c00481 pmid: 32223245
37 Jin G, Pang H S, Ji Y Y, et al. PYATB: An efficient python package for electronic structure calculations using ab initio tight-binding model [J]. Comput. Phys. Commun., 2023, 291: 108844
38 Chen M H, Ko H Y, Remsing R C, et al. Ab initio theory and modeling of water [J]. Proc. Natl. Acad. Sci. USA, 2017, 114: 10846
doi: 10.1073/pnas.1712499114 pmid: 28973868
39 Peng H W, Yang Z H, Perdew J P, et al. Versatile van der Waals density functional based on a meta-generalized gradient approximation [J]. Phys. Rev., 2016, 6X: 041005
40 Payne M C, Teter M P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients [J]. Rev. Mod. Phys., 1992, 64: 1045
41 Blöchl P E. Projector augmented-wave method [J]. Phys. Rev., 1994, 50B: 17953
42 Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Phys. Rev., 1990, 41B: 7892(R)
43 Zhang D, Liu X Z J, Zhang X Y, et al. DPA-2: Towards a universal large atomic model for molecular and material simulation [DB/OL]. arXiv: 2312. 15492v1, 2023
44 Lin P Z, Ren X G, Liu X H, et al. Ab initio electronic structure calculations based on numerical atomic orbitals: Basic fomalisms and recent progresses [J]. WIREs Comput. Mol. Sci., 2024, 14: e1687
45 Junquera J, Paz Ó, Sánchez-Portal D, et al. Numerical atomic orbitals for linear-scaling calculations [J]. Phys. Rev., 2001, 64B: 235111
46 Chen M H, Guo G C, He L X. Systematically improvable optimized atomic basis sets for ab initio calculations [J]. J. Phys. Condens. Matter, 2010, 22: 445501
47 Chen M H, Guo G C, He L X. Electronic structure interpolation via atomic orbitals [J]. J. Phys. Condens. Matter, 2011, 23: 325501
48 Li P F, Liu X H, Chen M H, et al. Large-scale ab initio simulations based on systematically improvable atomic basis [J]. Comput. Mater. Sci., 2016, 112: 503
49 Zheng D Y, Ren X G, He L X. Accurate stress calculations based on numerical atomic orbital bases: Implementation and benchmarks [J]. Comput. Phys. Commun., 2021, 267: 108043
50 Lin P Z, Ren X G, He L X. Strategy for constructing compact numerical atomic orbital basis sets by incorporating the gradients of reference wavefunctions [J]. Phys. Rev., 2021, 103B: 235131
51 Liu Y, Ding X L, Chen M H, et al. A caveat of the charge-extrapolation scheme for modeling electrochemical reactions on semiconductor surfaces: An issue induced by a discontinuous Fermi level change [J]. Phys. Chem. Chem. Phys., 2022, 24: 15511
doi: 10.1039/d2cp00642a pmid: 35713226
52 Zheng Y, Liu F, Nan H Q, et al. Disordered hyperuniformity in two-dimensional amorphous silica [J]. Sci. Adv., 2020, 6: eaba0826
53 Chen D Y, Liu Y, Zheng Y, et al. Disordered hyperuniform quasi-one-dimensional materials [J]. Phys. Rev., 2022, 106B: 235427
54 Jin G, He L X. Peculiar band geometry induced giant shift current in ferroelectric SnTe monolayer [J]. npj Comput. Mater., 2024, 10: 23
55 Gillen R, Maultzsch J. Family behavior and Dirac bands in armchair nanoribbons with 4-8 defect lines [J]. J. Phys. Condens. Matter., 2024, 36: 295501
56 Pang H S, Jin G, He L X. Tuning of Berry-curvature dipole in Ta-As slabs: An effective route to enhance the nonlinear Hall response [J]. Phys. Rev. Mater., 2024, 8: 043403
57 Zhao Z Z, Sun M L, Ji Y Y, et al. Efficient homojunction tin perovskite solar cells enabled by gradient germanium doping [J]. Nano Lett., 2024, 25: 5513
58 Dai Z J, Jin G, He L X. Interplay between magnetic structures and surface states in MnBi2Te4 from first-principles studies [J]. Phys. Rev., 2023, 108B: 085112
59 Zheng D Y, Shen Z X, Chen M H, et al. Retention and recycling of deuterium in liquid lithium-tin slab studied by first-principles molecular dynamics [J]. J. Nucl. Mater., 2021, 543: 152542
60 Liu X H, Zheng D Y, Ren X G, et al. First-principles molecular dynamics study of deuterium diffusion in liquid tin [J]. J. Chem. Phys., 2017, 147: 064505
61 Wang Q P, Zheng D Y, He L X, et al. Cooperative effect in a graphite intercalation compound: Enhanced mobility of AlCl4 in the graphite cathode of aluminum-ion batteries [J]. Phys. Rev. Appl., 2019, 12: 044060
62 Liu Y, Ren X G, He L X. A DFT study of energetic and structural properties of a full turn of A-form DNA under relaxed and stretching conditions [J]. J. Chem. Phys., 2019, 151: 215102
63 Liu Y, Liu X H, Chen M H. Copper-doped beryllium and beryllium oxide interface: A first-principles study [J]. J. Nucl. Mater., 2021, 545: 152733
64 Shao X C, Qu X, Liu S Y, et al. Structure evolution of chromium-doped boron clusters: Toward the formation of endohedral boron cages [J]. RSC Adv., 2019, 9: 2870
65 Liu X H, Qi Y H, Zheng D Y, et al. Diffusion coefficients of Mg isotopes in MgSiO3 and Mg2SiO4 melts calculated by first-principles molecular dynamics simulations [J]. Geochim. Cosmochim. Acta, 2018, 223: 364
66 Baer R, Neuhauser D, Rabani E. Self-averaging stochastic Kohn-Sham density-functional theory [J]. Phys. Rev. Lett., 2013, 111: 106402
67 White A J, Collins L A. Fast and universal Kohn-Sham density functional theory algorithm for warm dense matter to hot dense plasma [J]. Phys. Rev. Lett., 2020, 125: 055002
68 Liu Q R, Chen M H. Plane-wave-based stochastic-deterministic density functional theory for extended systems [J]. Phys. Rev., 2022, 106B: 125132
69 Chen T, Liu Q R, Liu Y, et al. Combining stochastic density functional theory with deep potential molecular dynamics to study warm dense matter [J]. Matter Radiat. Extremes, 2024, 9: 015604
70 Chen Y X, Zhang L F, Wang H, et al. DeePKS: A comprehensive data-driven approach toward chemically accurate density functional theory [J]. J. Chem. Theory Comput., 2021, 17: 170
doi: 10.1021/acs.jctc.0c00872 pmid: 33296197
71 Li W F, Ou Q, Chen Y X, et al. DeePKS + ABACUS as a bridge between expensive quantum mechanical models and machine learning potentials [J]. J. Phys. Chem., 2022, 126A: 9154
72 Ou Q, Tuo P, Li W F, et al. DeePKS model for halide perovskites with the accuracy of a hybrid functional [J]. J. Phys. Chem., 2023, 127C: 18755
73 Zhang P C, Gardini A T, Xu X F, et al. Intramolecular and water mediated tautomerism of solvated glycine [J]. J. Chem. Inf. Model., 2024, 64: 3599
74 Zhang L F, Lin D Y, Wang H, et al. Active learning of uniformly accurate interatomic potentials for materials simulation [J]. Phys. Rev. Mater., 2019, 3: 023804
75 Zhang D, Bi H R, Dai D Z, et al. Pretraining of attention-based deep learning potential model for molecular simulation [J]. npj Comput. Mater., 2024, 10: 94
76 Wu J, Yang J Y, Liu Y J S, et al. Universal interatomic potential for perovskite oxides [J]. Phys. Rev., 2023, 108B: L180104
77 Liu J C, Zhang X C, Chen T, et al. Machine-learning-based interatomic potentials for group IIB to VIA semiconductors: Toward a universal model [J]. J. Chem. Theory Comput., 2024, 20: 5717
78 Wang Y A, Govind N, Carter E A. Orbital-free kinetic-energy functionals for the nearly free electron gas [J]. Phys. Rev., 1998, 58B: 13465
79 Wang L W, Teter M P. Kinetic-energy functional of the electron density [J]. Phys. Rev., 1992, 45: 13196
80 Chen M H, Jiang X W, Zhuang H L, et al. Petascale orbital-free density functional theory enabled by small-box algorithms [J]. J. Chem. Theory Comput., 2016, 12: 2950
doi: 10.1021/acs.jctc.6b00326 pmid: 27145175
81 Wang Y A, Govind N, Carter E A. Orbital-free kinetic-energy density functionals with a density-dependent kernel [J]. Phys. Rev., 1999, 60B: 16350
82 Huang C, Carter E A. Nonlocal orbital-free kinetic energy density functional for semiconductors [J]. Phys. Rev., 2010, 81B: 045206
83 Huang C, Carter E A. Transferable local pseudopotentials for magnesium, aluminum and silicon [J]. Phys. Chem. Chem. Phys., 2008, 10: 7109
doi: 10.1039/b810407g pmid: 19039345
84 Sun L, Chen M H. Machine learning based nonlocal kinetic energy density functional for simple metals and alloys [J]. Phys. Rev., 2024, 109B: 115135
[1] 李聪, 王猛, 屠汉俊, 施立群. Y掺杂Ti膜的吸放氢行为[J]. 金属学报, 2024, 60(6): 826-836.
[2] 刘悦, 姚文轩, 刘大晖, 丁琳, 杨正伟, 刘微, 于涛, 施思齐. 高质量文本数据驱动的命名实体识别加速镍基单晶高温合金材料知识发现[J]. 金属学报, 2024, 60(10): 1429-1438.
[3] 冀秀梅, 侯美伶, 王龙, 刘玠, 高克伟. 基于机器学习的中厚板变形抗力模型建模与应用[J]. 金属学报, 2023, 59(3): 435-446.
[4] 蒋宗佑,赵宗彦. 水分子在Au和Cu及其合金表面的吸附与分解DFT计算研究*[J]. 金属学报, 2016, 52(12): 1586-1594.