Please wait a minute...
金属学报  2023, Vol. 59 Issue (11): 1419-1427    DOI: 10.11900/0412.1961.2022.00128
  本期目录 | 过刊浏览 |
NiTi-Nb原位复合材料的准线性超弹性变形
姜江1, 郝世杰2, 姜大强2, 郭方敏2, 任洋3, 崔立山2()
1.江西省科学院 江西省铜钨新材料重点实验室 南昌 330096
2.中国石油大学(北京) 新能源与材料学院 昌平 102249
3.X -ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite
JIANG Jiang1, HAO Shijie2, JIANG Daqiang2, GUO Fangmin2, REN Yang3, CUI Lishan2()
1.Jiangxi Key Laboratory of Advanced Copper and Tungsten Materials, Jiangxi Academy of Sciences, Nanchang 330096, China
2.College of New Energy and Materials, China University of Petroleum-Beijing, Changping 102249, China
3.X -ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
引用本文:

姜江, 郝世杰, 姜大强, 郭方敏, 任洋, 崔立山. NiTi-Nb原位复合材料的准线性超弹性变形[J]. 金属学报, 2023, 59(11): 1419-1427.
Jiang JIANG, Shijie HAO, Daqiang JIANG, Fangmin GUO, Yang REN, Lishan CUI. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. Acta Metall Sin, 2023, 59(11): 1419-1427.

全文: PDF(2153 KB)   HTML
摘要: 

据文献报道,Nb纳米线增强NiTi记忆合金复合材料可展现超常的准线性超弹特性。为揭示该准线性超弹特性的产生和变形机制,通过真空感应熔炼、锻造、拔丝方法原位合成了NiTi-Nb复合材料丝材。TEM显微分析表明,Nb纳米线沿丝材轴向平行分布在纳米晶NiTi基体中。该材料在经历一次9%的预变形后会展现准线性超弹特性,其屈服强度达1.7 GPa,表观Young's模量约34 GPa,准线性超弹性应变接近5.5%。同步辐射高能X射线原位拉伸实验结果表明,准线性超弹性的产生与以下2点原因有关:(1) 复合材料经历预变形后,Nb纳米线和NiTi基体间会产生耦合力,再次加载时,NiTi所受的耦合拉应力可以将局部区域应力诱发马氏体相变所需的外应力降低到零附近,并且耦合力越大,加载初期的相变速率越高,经过适当的预变形后,加载初始就能够持续发生高速率相变;(2) NiTi中耦合拉应力呈梯度分布,使相变应力-应变曲线不再是常见的“平台型”,转变为“硬化型”斜线。

关键词 NiTi-Nb复合材料应力诱发马氏体相变准线性超弹性    
Abstract

In the past decade, a unique composite system consisting of Nb nanowire and NiTi shape memory alloy matrix has attracted considerable attention. One of the works published in Science proposed that the NiTi-Nb composite has superior properties, including high strength (1.65 GPa), low Young's modulus (25.8 GPa), and quasi-linear superelasticity (6.4%). In particular, given the quasi-linear superelasticity of this composite, (1) continuous stress-induced martensitic transformation occurred even at the beginning of tensile loading, which indicated that the external stress required to start the transformation was reduced to almost zero; (2) the transformation (stress-strain) curve is a “hardening type” rather than a “plateau type,” with apparent Young's modulus of 25.8 GPa, and (3) the amount of quasi-linear superelasticity deformation is 6.4%, which is higher than that of conventional binary NiTi alloy. This work focused on the quasi-linear superelasticity property. Thus, an in situ NiTi-Nb composite was prepared by vacuum induction melting, hot forging, and wire drawing. Microscopic analysis showed that Nb nanowires were distributed in parallel inside the nanocrystalline NiTi matrix along the wire axial direction. Quasi-linear superelasticity was obtained after 9% pre-deformation, with a yield stress of 1.7 GPa, apparent Young's modulus of 34 GPa, and quasi-linear superelasticity deformation of ~5.5%, which is similar to the result proposed in Science. In situ synchrotron XRD measurements were conducted to analyze the effect of pre-deformation on the coupling effect between NiTi and Nb nanowire. The origin and deformation mechanism of the quasi-linear superelasticity were systematically studied.Results revealed that coupling tensile stress in NiTi, which was generated by pre-deformation, increased gradually with the increase of the pre-deformation strain, thereby providing a driving force for stress-induced martensitic transformation. The external stress required to start the transformation could be reduced to almost zero in some local areas as a result of the coupling tensile stress. The initial velocity of transformation increased with the increase of the coupling tensile stress in NiTi. Therefore, a continuous transformation with relatively high velocity was obtained even at the beginning of tensile loading after a proper pre-deformation. Furthermore, the gradient distribution of coupling tensile stress inside B2-NiTi led to the “hardening-type” transformation (stress-strain) curve.

Key wordsNiTi-Nb composite    stress-induced martensitic transformation    quasi-linear superelasticity
收稿日期: 2022-03-22     
ZTFLH:  TB34  
基金资助:国家自然科学基金项目(51731010);国家自然科学基金项目(51861011);国家自然科学基金项目(51971243);国家自然科学基金项目(51971244);江西省重大科技研发专项项目(20212-AAE01003)
通讯作者: 崔立山,lscui@cup.edu.cn,主要从事形状记忆合金及其复合材料研究
Corresponding author: CUI Lishan, professor, Tel: (010)89731158, E-mail: lscui@cup.edu.cn
作者简介: 姜 江,男,1981年生,副研究员,博士
图1  NiTi-Nb复合材料的预变形过程曲线和二元NiTi合金丝的循环拉伸曲线
图2  NiTi-Nb复合材料丝材纵截面的TEM像及其同步辐射高能XRD花样
图3  NiTi-Nb复合材料的准线性超弹性应力-应变曲线
图4  NiTi-Nb复合材料不同拉伸循环的应力-应变曲线
图5  NiTi-Nb复合材料6次拉伸循环对应的的同步辐射高能X射线原位拉伸衍射谱线
图6  NiTi-Nb复合材料在6次加载过程中的应力-应变曲线,以及在加载过程中NiTi马氏体峰面积随宏观应变的演变曲线
图7  实验涉及的6次循环中,每次加载的初期和“第一次屈服”后2个阶段B19'(001)峰面积-宏观应变曲线斜率的演变
图8  Nb纳米线的弹性晶格应变-宏观应变曲线,及6次加载过程中B2-NiTi母相的弹性晶格应变-宏观应变曲线
图9  样品预变形示意图,预变形后样品内部应力分布示意图,B2-NiTi母相在每次加载前的衍射峰半高宽值和残余应变,及预变形后再次加载过程中马氏体相变从界面向NiTi芯部推进示意图
1 Niu J G, Xiao W. The lattice instability induced by Ti-site Ni in B2 austenite in TiNi alloy [J]. Acta Metall. Sin., 2019, 55: 267
doi: 10.11900/0412.1961.2018.00299
1 牛建钢, 肖 伟. TiNi合金B2奥氏体中Ti位Ni诱导的晶格失稳 [J]. 金属学报, 2019, 55: 267
doi: 10.11900/0412.1961.2018.00299
2 Zhao Y C, Sun H, Li C L, et al. High temperature deformation behavior of high strength and toughness Ti-Ni base bulk metallic glass composites [J]. Acta Metall. Sin., 2018, 54: 1818
doi: 10.11900/0412.1961.2018.00256
2 赵燕春, 孙 浩, 李春玲 等. 高强韧Ti-Ni基块体金属玻璃复合材料高温变形行为 [J]. 金属学报, 2018, 54: 1818
doi: 10.11900/0412.1961.2018.00256
3 Wei Z Z, Ma X, Zhang X P. Topological modelling of the B2-B19' martensite transformation crystallography in NiTi alloy [J]. Acta Metall. Sin., 2018, 54: 1461
3 韦昭召, 马 骁, 张新平. NiTi合金B2-B19'马氏体相变晶体学的拓扑模拟研究 [J]. 金属学报, 2018, 54: 1461
doi: 10.11900/0412.1961.2018.00078
4 He Z R, Wu P Z, Liu K K, et al. Microstructure, phase transformation and shape memory behavior of chilled Ti-47Ni alloy ribbons [J]. Acta Metall. Sin., 2018, 54: 1157
doi: 10.11900/0412.1961.2017.00410
4 贺志荣, 吴佩泽, 刘康凯 等. 激冷Ti-47Ni合金薄带的组织、相变和形状记忆行为 [J]. 金属学报, 2018, 54: 1157
doi: 10.11900/0412.1961.2017.00410
5 Yang C G, Shan J G, Ren J L. Phase transformation temperature control of weld metal of laser welded TiNi shape memory alloy joint [J]. Acta Metall. Sin., 2013, 49: 199
doi: 10.3724/SP.J.1037.2012.00482
5 杨成功, 单际国, 任家烈. TiNi形状记忆合金激光焊接焊缝金属相变温度的控制 [J]. 金属学报, 2013, 49: 199
6 Ke C B, Cao S S, Ma X, et al. Phase field simulation of auto-catalytic growth effect of coherent Ni4Ti3 precipitate in NiTi shape memory alloy [J]. Acta Metall. Sin., 2013, 49: 115
doi: 10.3724/SP.J.1037.2012.00264
6 柯常波, 曹姗姗, 马 骁 等. NiTi形状记忆合金中Ni4Ti3共格沉淀相自催化生长效应的相场模拟 [J]. 金属学报, 2013, 49: 115
7 Zhu Y G, Zhang Y, Zhao D. Micromechanical constitutive model for phase transformation of NiTi polycrystal SMA [J]. Acta Metall. Sin., 2013, 49: 123
doi: 10.3724/SP.J.1037.2012.00319
7 朱祎国, 张 杨, 赵 聃. 多晶NiTi形状记忆合金相变的细观力学本构模型 [J]. 金属学报, 2013, 49: 123
8 Du H F, Zeng P, Zhao J Q, et al. In situ multi-fields investigation on instability and transformation localization of martensitic phase transformation in NiTi alloys [J]. Acta Metall. Sin., 2013, 49: 17
doi: 10.3724/SP.J.1037.2012.00479
8 杜泓飞, 曾 攀, 赵加清 等. NiTi合金中马氏体相变失稳与局部化的原位多场研究 [J]. 金属学报, 2013, 49: 17
doi: 10.3724/SP.J.1037.2012.00479
9 Zhang H B, Jin W, Yang R. 3D finite element simulation of pull-out force of TiNiFe shape memory pipe coupling with inner convex [J]. Acta Metall. Sin., 2012, 48: 1520
doi: 10.3724/SP.J.1037.2012.00493
9 张慧博, 金 伟, 杨 锐. 内脊型TiNiFe记忆合金管接头拉脱力的三维有限元模拟 [J]. 金属学报, 2012, 48: 1520
10 Yang C G, Shan J G, Ren J L. Study on shape recovery temperature of TiNi alloy laser weld joint [J]. Acta Metall. Sin., 2012, 48: 513
doi: 10.3724/SP.J.1037.2011.00683
10 杨成功, 单际国, 任家烈. TiNi合金激光焊接接头形状恢复温度的研究 [J]. 金属学报, 2012, 48: 513
doi: 10.3724/SP.J.1037.2011.00683
11 He Z R, Wang Q, Shao D W. Effect of aging on microstructure and superelasticity in Ti-50.8Ni-0.3Cr shape memory alloy [J]. Acta Metall. Sin., 2012, 48: 56
doi: 10.3724/SP.J.1037.2011.00458
11 何志荣, 王 启, 邵大伟. 时效对Ti-50.8Ni-0.3Cr形状记忆合金组织和超弹性的影响 [J]. 金属学报, 2012, 48: 56
12 Jiang H J, Ke C B, Cao S S, et al. Preparation of nano-sized SiC reinforced NiTi shape memory composites and their mechanical properties and damping behavior [J]. Acta Metall. Sin., 2011, 47: 1105
12 江鸿杰, 柯常波, 曹姗姗 等. 纳米SiC颗粒增强NiTi形状记忆复合材料制备及其力学性能和阻尼行为[J]. 金属学报, 2011, 47: 1105
13 Ke C B, Ma X, Zhang X P. Phase field simulation of effects of pores on B2-R phase transformation in NiTi shape memory alloy [J]. Acta Metall. Sin., 2011, 47: 129
13 柯常波, 马 骁, 张新平. 孔隙对NiTI形状记忆合金中B2-R相变影响的相场模拟 [J]. 金属学报, 2011, 47: 129
doi: 10.3724/SP.J.1037.2010.00422
14 Yang J, He Z R, Wang F, et al. Effect of Cr addition on transformation and cyclic deformation characteristics of Ti-Ni shape memory alloy [J]. Acta Metall. Sin., 2011, 47: 157
doi: 10.3724/SP.J.1037.2010.00390
14 杨 军, 贺志荣, 王 芳 等. Cr掺杂对Ti-Ni形状记忆合金相变和循环形变特性的影响 [J]. 金属学报, 2011, 47: 157
15 Ke C B, Ma X, Zhang X P. Phase field simulation of the effect of applied external stress on growth kinetics of coherent Ni4Ti3 precipitate in NiTi alloy [J]. Acta Metall. Sin., 2010, 46: 921
doi: 10.3724/SP.J.1037.2010.00027
15 柯常波, 马 骁, 张新平. 外应力对NiTi合金中Ni4Ti3共格沉淀相长大行为影响的相场法模拟 [J]. 金属学报, 2010, 46: 921
doi: 10.3724/SP.J.1037.2010.00027
16 Wang Q, He Z R, Wang Y S, et al. Effects of annealing temperature and stress-strain cycle on superelasticity of Ti-Ni-Cr shape memory alloy [J]. Acta Metall. Sin., 2010, 46: 800
doi: 10.3724/SP.J.1037.2010.00800
16 王 启, 贺志荣, 王永善 等. 退火温度和应力-应变循环对Ti-Ni-Cr形状记忆合金超弹性的影响 [J]. 金属学报, 2010, 46: 800
doi: 10.3724/SP.J.1037.2010.00047
17 Jiang D Q, Jiang J, Shi X B, et al. Constrained martensitic transformation in nanocrystalline TiNi/NbTi shape memory composites [J]. J. Alloys Compd., 2011, 577(suppl.1) : S749
18 Hao S J, Cui L S, Wang Y D, et al. The ultrahigh mechanical energy-absorption capability evidenced in a high-strength NbTi/NiTi nanocomposite [J]. Appl. Phys. Lett., 2011, 99: 024102
19 Hao S J, Cui L S, Shao Y, et al. In situ X-ray diffraction study of deformation behavior in a Fe/NiTi composite [J]. Appl. Phys. Lett., 2012, 101: 221904
doi: 10.1063/1.4767993
20 Hao S J, Cui L S, Jiang D Q, et al. A transforming metal nanocomposite with large elastic strain, low modulus, and high strength [J]. Science, 2013, 339: 1191
doi: 10.1126/science.1228602 pmid: 23471404
21 Wang S, Cui L S, Hao S J, et al. Locality and rapidity of the ultra-large elastic deformation of Nb nanowires in a NiTi phase-transforming matrix [J]. Sci. Rep., 2014, 4: 6753
doi: 10.1038/srep06753 pmid: 25341619
22 Liu Z Y, Cui L S, Liu Y N, et al. Influence of internal stress coupling on the deformation behavior of NiTi-Nb nanowire composites [J]. Scr. Mater., 2014, 77: 75
doi: 10.1016/j.scriptamat.2014.01.027
23 Liu Z Y, Liu Y N, Jiang D Q, et al. Local strain matching between Nb nanowires and a phase transforming NiTi matrix in an in-situ composite [J]. Mater. Sci. Eng., 2014, A610: 6
24 Cui L S, Jiang D Q. Progress in high performance nanocomposites based on a strategy of strain matching [J]. Acta Metall. Sin., 2019, 55: 45
24 崔立山, 姜大强. 基于应变匹配的高性能金属纳米复合材料研究进展 [J]. 金属学报, 2019, 55: 45
doi: 10.11900/0412.1961.2018.00457
25 Zhang X D, Zong H X, Cui L S, et al. Origin of high strength, low modulus superelasticity in nanowire-shape memory alloy composites [J]. Sci. Rep., 2017, 7: 46360
doi: 10.1038/srep46360 pmid: 28402321
26 Zhou M. Exceptional properties by design [J]. Science, 2013, 339: 1161
doi: 10.1126/science.1236378 pmid: 23471396
27 Zheng Y F, Huang B M, Zhang J X, et al. The microstructure and linear superelasticity of cold-drawn TiNi alloy [J]. Mater. Sci. Eng., 2000, A279: 25
28 Zadno G R, Duerig T W. Linear and non-linear superelasticity in NiTi [J]. MRS Shape Memory Mater., 1989, 9: 201
29 Yawny A, Sade M, Eggeler G. Pseudoelastic cycling of ultra-fine-grained NiTi shape-memory wires [J]. Int. J. Mater. Res., 2005, 96: 608
30 Huang X, Liu Y. Effect of annealing on the transformation behavior and superelasticity of NiTi shape memory alloy [J]. Scr. Mater., 2001, 45: 153
doi: 10.1016/S1359-6462(01)01005-3
31 Cohen D E, Bevk J. Enhancement of the Young's modulus in the ultrafine Cu-Nb filamentary composites [J]. Appl. Phys. Lett., 1981, 39: 595
doi: 10.1063/1.92842
[1] 杨锐 郝玉琳 Obbard E G 董利民 卢斌. 钛合金中的正交相变及其应用[J]. 金属学报, 2010, 46(11): 1443-1449.
[2] 林成新; 谷南驹; 刘庆锁; 温春生; 赵连城 . Fe-Mn-Si形状记忆合金低温松弛机理[J]. 金属学报, 2002, 38(8): 825-828 .
[3] 饶光斌; 王俭秋; 韩恩厚; 柯伟 . 应力诱发马氏体相变对TiNi形状记忆合金疲劳过程影响的原位实验观察[J]. 金属学报, 2002, 38(6): 575-582 .
[4] 丛家瑞;范鹤立;曹兴言;李隆盛;曹月君;徐香秋. 奥氏体-贝氏体球墨铸铁中奥氏体对接触疲劳性能的影响[J]. 金属学报, 1992, 28(7): 41-44.
[5] 谭树松;徐惠彬. Ti-51at.-%Ni全方位记忆效应的一种解释[J]. 金属学报, 1990, 26(1): 76-79.