Please wait a minute...
金属学报  2013, Vol. 49 Issue (10): 1211-1218    DOI: 10.3724/SP.J.1037.2013.00142
  论文 本期目录 | 过刊浏览 |
铜合金在中国南海深海环境下的腐蚀行为研究
孙飞龙,李晓刚,卢琳,万红霞,杜翠薇,刘智勇
北京科技大学腐蚀与防护中心, 北京100083
CORROSION BEHAVIOR OF COPPER ALLOYS IN DEEP OCEAN ENVIRONMENT OF SOUTH CHINA SEA
SUN Feilong, LI Xiaogang, LU Lin, WAN Hongxia, DU Cuiwei, LIU Zhiyong
Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083
引用本文:

孙飞龙,李晓刚,卢琳,万红霞,杜翠薇,刘智勇. 铜合金在中国南海深海环境下的腐蚀行为研究[J]. 金属学报, 2013, 49(10): 1211-1218.
SUN Feilong, LI Xiaogang, LU Lin, WAN Hongxia, DU Cuiwei, LIU Zhiyong. CORROSION BEHAVIOR OF COPPER ALLOYS IN DEEP OCEAN ENVIRONMENT OF SOUTH CHINA SEA[J]. Acta Metall Sin, 2013, 49(10): 1211-1218.

全文: PDF(4256 KB)  
摘要: 

通过实海暴露实验, 研究了H62黄铜,QAl9-2铝青铜和QSn6.5-0.1锡青铜在中国南海海域800和1200 m深海环境下浸泡3a的腐蚀行为. 结果表明: H62黄铜的腐蚀速率最高, 达到0.042 mm/a;QAl9-2铝青铜最低, 仅为0.003 mm/a; QSn6.5-0.1锡青铜居中, 约为0.004-0.007 mm/a.分析表明: 随着水深的增加, H62黄铜的腐蚀速率呈线性降低;QAl9-2铝青铜和QSn6.5-0.1锡青铜的腐蚀速率随水深的增加先降低后升高,腐蚀速率的最小值出现在水深800-1200 m之间. 采用SEM, EDS和XRD技术,进行了腐蚀形貌观察和腐蚀产物成分及相组成分析, 结果表明:H62黄铜发生了严重的脱锌腐蚀, 腐蚀产物由Cu, ZnO,Zn5(OH)8Cl2H2O和Cu(OH)2H2O组成,符合溶解-再沉积机制; QAl9-2铝青铜和QSn6.5-0.1锡青铜发生了脱成分(Al, Sn)腐蚀,QAl9-2铝青铜的腐蚀产物由Cu2O和CuCl2组成,QSn6.5-0.1锡青铜的腐蚀产物由Cu2O,CuCl2Cu2Cl(OH)3组成.

关键词 铜合金腐蚀深海实海    
Abstract

The corrosion in deep ocean environment has been paied more and more attentions to the exploitation of marine resources. Different from shallow marine environments, deep ocean environments are specially characterized by high hydrostatic pressure, low temperature, variable dissolved oxygen content and pH value in deep ocean, etc.. So the corrosion behaviour of materials, such as ferrous and nonferrous metal and coatings, in deep ocean environments is different from that in shallow marine environments. A number of researches have been carried out to investigate the corrosion behaviour of metals in natural deep ocean in a few developed countries. Such researches, however, began until 2008 in South China Sea. In this work, the corrosion behavior of H62 brass, QAl9-2 and QSn6.5-0.1 bronze in 800 and 1200 m deep ocean environments of South China Sea was studied using field tests. The results indicated that the corrosion rates of copper alloys decreased in the following order: H62 (0.042 mm/a) > QSn6.5-0.1 (0.004-0.007 mm/a) > QAl9-2 (0.003 mm/a). The corrosion rate of H62 brass decreased linearly with the increase in depth. While the corrosion rates of QAl9-2 and QSn6.5-0.1 bronze decreased first and then increased with the increase in depth. The minimum value of corrosion rate occurred between 800-1200 m. The morphology and composition of corrosion products were investigated using SEM, EDS and XRD. The results demonstrated that the dezincification corrosion obeying solution-redeposition mechanism in H62 brass occurred. The corrosion products were composed of Cu, ZnO, Zn5(OH)8Cl2H2O and Cu(OH)2H2O. And the dealloying corrosion in QAl9-2 and QSn6.5-0.1 bronze occurred. The corrosion products of QAl9-2 bronze consist of Cu2O and CuCl2, and those of QSn6.5-0.1 bronze Cu2O, CuCl2 and Cu2Cl(OH)3.

Key wordscopper alloy    corrosion    deep ocean    field test
收稿日期: 2013-03-28     
基金资助:

国家自然科学基金资助项目51171025

作者简介: 孙飞龙, 女, 1985生, 博士生

[1] David A, Shi X. Corros Sci, 2005; 47: 2335
[2] Zhou J L, Li X G, Cheng X Q, Dong C F, Du C W, Lu L. Corros Sci Prot Technol, 2010; 22: 47
(周建龙, 李晓刚, 程学群, 董超芳, 杜翠薇, 卢琳. 材料腐蚀与防护技术, 2010; 22: 47)
[3] Schumacher M. Sea Water Corrosion Handbook. New Jersey: Park Ridge, 1979: 150
[4] Dexter S C. Handbook of Oceanographic Engineering Materials. New York: Whiley-Interscience, 1979: 23
[5] Dexter S C. Corrosion, 1980; 36: 423
[6] Sparks C P, Cabillic J P, Schawann J C. J Energy Resour-Trans ASME, 1983; 105: 282
[7] Laque F L. Marine Corrosion. London: John Wiley and Sons Inc., 1975: 40
[8] Chandler K A. Marine and Offshore Corrosion (Marine Engineering Series). London: Butter worth, 1985: 72
[9] Warren A B. J Mar Res, 1982; 40: 823
[10] Sawant S S, Venkat K, Wagh A B. Indian J Technol, 1993; 31: 862
[11] Venkatesan R, Venkataswamy M A, Bhaskaran T A, Dwarakadasa E S, Ravindran M.Br Corros J, 2002; 37: 257
[12] Venkatesan R, Dwarakadasa E S, Ravindran M. Corros Prev Control, 2004; 51: 98
[13] Heiser J, Soo P. Corrosion of Barrier Materials in Seawater Environments.New York: Long Island, 1995: 23
[14] Fischer K P, Espelid B, Schei B. Corrosion 2001. Houston: NACE, 2001: Paper No.01013
[15] Fischer K P. Corrosion 99. Houston: NACE, 1999: Paper No.361
[16] Chen S, Hatt W, Wolfson S. Corrosion, 2003; 59: 721
[17] Akio K. Corros Sci, 2005; 47: 2361
[18] Mohammed R, Timothy J D. Int J Fatigue, 2008; 30: 2220
[19] Blundy R F, Shreir L L. Corros Sci, 1977; 17: 509
[20] Venkatesan R. PhD Dissertation, Indian Institute of Science, Bangalore, 2000
[21] Beccaria A M, Fiordiponti P, Mattogno G. Corros Sci, 1989; 29: 403
[22] Beccaria A M, Poggi G, Arfelli M, Mattogno G. Corros Sci, 1993; 34: 989
[23] Beccaria A M, Poggi G, Gingaud D, Castello P. Br Corros J, 1994; 29: 65
[24] Beccaria A M, Poggi G. Br Corros J, 1985; 20: 183
[25] Zhu X L, Li L Y, Xu J. Chin J Nonferrous Met, 1998; 8 (suppl 1): 210
(朱小龙, 林乐耘, 徐杰. 中国有色金属学报, 1998; 8(增刊1): 210)
[26] Langenegger E E, Robinson F P A. Corrosion, 1969; 25: 137
[27] Namboodhirl T K G, Chaudhary R S, Prakash B, Agrawal M K. Corros Sci, 1982; 22: 1037
[28] Li Y, Zhu Y L. Corros Prot, 2006; 27: 222
(李勇, 朱应禄. 腐蚀与防护, 2006; 27: 222)
[29] Kear G, Barker B D, Stokes K R, Walsh F C. Electrochim Acta, 2007; 52: 2343
[30] Strandberg H, Johansson L G. J Electrochem Soc, 1998; 145: 1093
[31] Nunea L, Reguera E, Corvo F, Gonzalez E, Vazquez C. Corros Sci, 2005; 47: 461

[1] 张奇亮, 王玉超, 李光达, 李先军, 黄一, 徐云泽. EH36钢在不同粒径沙砾冲击下的冲刷腐蚀耦合损伤行为[J]. 金属学报, 2023, 59(7): 893-904.
[2] 王宗谱, 王卫国, Rohrer Gregory S, 陈松, 洪丽华, 林燕, 冯小铮, 任帅, 周邦新. 不同温度轧制Al-Zn-Mg-Cu合金再结晶后的{111}/{111}近奇异晶界[J]. 金属学报, 2023, 59(7): 947-960.
[3] 李小涵, 曹公望, 郭明晓, 彭云超, 马凯军, 王振尧. 低碳钢Q235、管线钢L415和压力容器钢16MnNi在湛江高湿高辐照海洋工业大气环境下的初期腐蚀行为[J]. 金属学报, 2023, 59(7): 884-892.
[4] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[5] 陈润农, 李昭东, 曹燕光, 张启富, 李晓刚. 9%Cr合金钢在含Cl环境中的初期腐蚀行为及局部腐蚀起源[J]. 金属学报, 2023, 59(7): 926-938.
[6] 司永礼, 薛金涛, 王幸福, 梁驹华, 史子木, 韩福生. Cr添加对孪生诱发塑性钢腐蚀行为的影响[J]. 金属学报, 2023, 59(7): 905-914.
[7] 吴欣强, 戎利建, 谭季波, 陈胜虎, 胡小锋, 张洋鹏, 张兹瑜. Pb-Bi腐蚀Si增强型铁素体/马氏体钢和奥氏体不锈钢的研究进展[J]. 金属学报, 2023, 59(4): 502-512.
[8] 韩恩厚, 王俭秋. 表面状态对核电关键材料腐蚀和应力腐蚀的影响[J]. 金属学报, 2023, 59(4): 513-522.
[9] 王京阳, 孙鲁超, 罗颐秀, 田志林, 任孝旻, 张洁. 以抗CMAS腐蚀为目标的稀土硅酸盐环境障涂层高熵化设计与性能提升[J]. 金属学报, 2023, 59(4): 523-536.
[10] 夏大海, 计元元, 毛英畅, 邓成满, 祝钰, 胡文彬. 2024铝合金在模拟动态海水/大气界面环境中的局部腐蚀机制[J]. 金属学报, 2023, 59(2): 297-308.
[11] 廖京京, 张伟, 张君松, 吴军, 杨忠波, 彭倩, 邱绍宇. Zr-Sn-Nb-Fe-V合金在过热蒸汽中的周期性钝化-转折行为[J]. 金属学报, 2023, 59(2): 289-296.
[12] 常立涛. 压水堆主回路高温水中奥氏体不锈钢加工表面的腐蚀与应力腐蚀裂纹萌生:研究进展及展望[J]. 金属学报, 2023, 59(2): 191-204.
[13] 胡文滨, 张晓雯, 宋龙飞, 廖伯凯, 万闪, 康磊, 郭兴蓬. 共晶高熵合金AlCoCrFeNi2.1H2SO4 溶液中的腐蚀行为[J]. 金属学报, 2023, 59(12): 1644-1654.
[14] 陈凯旋, 李宗烜, 王自东, Demange Gilles, 陈晓华, 张佳伟, 吴雪华, Zapolsky Helena. Cu-2.0Fe合金等温处理过程中富Fe析出相的形态演变[J]. 金属学报, 2023, 59(12): 1665-1674.
[15] 宋嘉良, 江紫雪, 易盼, 陈俊航, 李曌亮, 骆鸿, 董超芳, 肖葵. 高铁转向架用钢G390NH在模拟海洋和工业大气环境下的腐蚀行为及产物演化规律[J]. 金属学报, 2023, 59(11): 1487-1498.