|
|
海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应 |
张守清1,2, 胡小锋1, 杜瑜宾1,2, 姜海昌1, 庞辉勇3, 戎利建1( ) |
1 中国科学院金属研究所中国科学院核用材料与安全评价重点实验室 沈阳 110016 2 中国科学技术大学材料科学与工程学院 沈阳 110016 3 舞阳钢铁有限责任公司 平顶山 462500 |
|
Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform |
ZHANG Shouqing1,2, HU Xiaofeng1, DU Yubin1,2, JIANG Haichang1, PANG Huiyong3, RONG Lijian1( ) |
1 CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China 3 Wuyang Iron and Steel Co. Ltd. , Pingdingshan 462500, China |
引用本文:
张守清, 胡小锋, 杜瑜宾, 姜海昌, 庞辉勇, 戎利建. 海洋平台用Ni-Cr-Mo-B超厚钢板的截面效应[J]. 金属学报, 2020, 56(9): 1227-1238.
Shouqing ZHANG,
Xiaofeng HU,
Yubin DU,
Haichang JIANG,
Huiyong PANG,
Lijian RONG.
Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform[J]. Acta Metall Sin, 2020, 56(9): 1227-1238.
[1] |
Yang C F, Su H. Research and development of high performance shipbuilding and marine engineering steel [J]. Iron Steel, 2012, 47(12): 1
|
[1] |
(杨才福, 苏 航. 高性能船舶及海洋工程用钢的开发 [J]. 钢铁, 2012, 47(12): 1)
|
[2] |
Tsuyama S. Thick plate technology for the last 100 years: A world leader in thermo mechanical control process [J]. ISIJ Int., 2015, 55: 67
doi: 10.2355/isijinternational.55.67
|
[3] |
Zhang J J. Medium and Heavy Plate Production [M]. Beijing: Metallurgical Industry Press, 2005: 1
|
[3] |
(张景进. 中厚板生产 [M]. 北京: 冶金工业出版社, 2005: 1)
|
[4] |
Wu T, Wu D Z, Ye J J, et al. Development of 177.8 mm thickness steel plate for gear rack of jack-up offshore platform [J]. Wide Heavy Plate, 2015, 21(3): 1
|
[4] |
(吴 涛, 吴东召, 叶建军等. 自升式海洋平台齿条用177.8 mm厚度钢板的研制开发 [J]. 宽厚板, 2015, 21(3): 1)
|
[5] |
Gao Z Y. Study of hot deformtation behavior and microstructure evolution of HSLA ultra-heavy plate steel [D]. Beijing: University of Science and Technology Beijing, 2016
|
[5] |
(高志玉. 特厚板用HSLA钢的热变形行为与组织演变研究 [D]. 北京: 北京科技大学, 2016)
|
[6] |
Liu H B, Zhang H Q, Li J F. Thickness dependence of toughness in ultra-heavy low-alloyed steel plate after quenching and tempering [J]. Metals, 2018, 8: 628
doi: 10.3390/met8080628
|
[7] |
Wang X Y, Pan T, Wang H, et al. Investigation of the toughness of low carbon tempered martensite in the surface of Ni-Cr-Mo-B ultra-heavy plate steel [J]. Acta Metall. Sin., 2012, 48: 401
doi: 10.3724/SP.J.1037.2011.00698
|
[7] |
(王小勇, 潘 涛, 王 华等. Ni-Cr-Mo-B超厚钢板表面低碳回火马氏体组织的韧性研究 [J]. 金属学报, 2012, 48: 401)
|
[8] |
Liu D S, Cheng B G, Chen Y Y. Fine microstructure and toughness of low carbon copper containing ultra high strength NV-F690 heavy steel plate [J]. Acta Metall. Sin., 2012, 48: 334
|
[8] |
(刘东升, 程丙贵, 陈圆圆. 低C含Cu NV-F690特厚钢板的精细组织和强韧性 [J]. 金属学报, 2012, 48: 334)
|
[9] |
Liu D S, Cheng B G, Chen Y Y. Strengthening and toughening of a heavy plate steel for shipbuilding with yield strength of approximately 690 MPa [J]. Metall. Mater. Trans., 2013, 44A: 440
|
[10] |
Hwang B, Lee C G, Kim S J. Low-temperature toughening mechanism in thermomechanically processed high-strength low-alloy steels [J]. Metall. Mater. Trans., 2010, 42A: 717
|
[11] |
Kim S, Lee S, Lee B S. Effects of grain size on fracture toughness in transition temperature region of Mn-Mo-Ni low-alloy steels [J]. Mater. Sci. Eng., 2003, A359: 198
|
[12] |
Wang J. Study on structural heredity of 30Cr2Ni4MoV steel for steam turbine lp rotor of heavy forgings [D]. Qingdao: Shandong University of Science and Technology, 2011
|
[12] |
(王 健. 大型锻件汽轮机低压转子用30Cr2Ni4MoV钢组织遗传研究 [D]. 青岛: 山东科技大学, 2011)
|
[13] |
Zhou T, Yu H, Wang S Y. Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism [J]. Mater. Sci. Eng., 2016, A658: 150
|
[14] |
Furuhara T, Kawata H, Morito S, et al. Crystallography of upper bainite in Fe-Ni-C alloys [J]. Mater. Sci. Eng., 2006, A431: 228
|
[15] |
Morsdorf L, Tasan C C, Ponge D, et al. 3D structural and atomic-scale analysis of lath martensite: Effect of the transformation sequence [J]. Acta Mater., 2015, 95: 366
|
[16] |
Jiang Z H, Wang P, Li D Z, et al. The evolutions of microstructure and mechanical properties of 2.25Cr-1Mo-0.25V steel with different initial microstructures during tempering [J]. Mater. Sci. Eng., 2017, A699: 165
|
[17] |
Takayama N, Miyamoto G, Furuhara T. Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel [J]. Acta Mater., 2012, 60: 2387
doi: 10.1016/j.actamat.2011.12.018
|
[18] |
Chen J, Tang S, Liu Z Y, et al. Microstructural characteristics with various cooling paths and the mechanism of embrittlement and toughening in low-carbon high performance bridge steel [J]. Mater. Sci. Eng., 2013, A559: 241
|
[19] |
Luo Z J, Shen J C, Su H, et al. Effect of substructure on toughness of lath martensite/bainite mixed structure in low-carbon steels [J]. J. Iron Steel Res. Int., 2010, 17: 40
|
[20] |
Zheng Y X, Wang F M, Li C R, et al. Effect of microstructure and precipitates on mechanical properties of Cr-Mo-V Alloy steel with different austenitizing temperatures [J]. ISIJ Int., 2018, 58: 1126
doi: 10.2355/isijinternational.ISIJINT-2017-531
|
[21] |
Naylor J P. The influence of the lath morphology on the yield stress and transition temperature of martensitic- bainitic steels [J]. Metall. Mater. Trans., 1979, 10A: 861
|
[22] |
Kestenbach H J, Gallego J. On dispersion hardening of microalloyed hot strip steels by carbonitride precipitation in austenite [J]. Scr. Mater., 2001, 44: 791
doi: 10.1016/S1359-6462(00)00660-6
|
[23] |
Lee K H, Kim M C, Yang W J, et al. Evaluation of microstructural parameters controlling cleavage fracture toughness in Mn-Mo-Ni low alloy steels [J]. Mater. Sci. Eng., 2013, A565: 158
|
[24] |
Kang J, Li C N, Yuan G, et al. Improvement of strength and toughness for hot rolled low-carbon bainitic steel via grain refinement and crystallographic texture [J]. Mater. Lett., 2016, 175: 157
doi: 10.1016/j.matlet.2016.04.007
|
[25] |
Mao G J, Cayron C, Cao R, et al. The relationship between low-temperature toughness and secondary crack in low-carbon bainitic weld metals [J]. Mater. Charact., 2018, 145: 516
doi: 10.1016/j.matchar.2018.09.012
|
[26] |
Díaz-Fuentes M, Iza-Mendia A, Gutiérrez I. Analysis of different acicular ferrite microstructures in low-carbon steels by electron backscattered diffraction. Study of their toughness behavior [J]. Metall. Mater. Trans., 2003, 34A: 2505
|
[27] |
Brozzo P, Buzzichelli G, Mascanzoni A, et al. Microstructure and cleavage resistance of low-carbon bainitic steels [J]. Met. Sci., 1977, 11: 123
|
[28] |
Wang C F, Wang M Q, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel [J]. Scr. Mater., 2008, 58: 492
doi: 10.1016/j.scriptamat.2007.10.053
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|