Please wait a minute...
金属学报  2019, Vol. 55 Issue (8): 1041-1048    DOI: 10.11900/0412.1961.2018.00432
  本期目录 | 过刊浏览 |
基于中间过渡层的 5A06/0Cr18Ni10Ti 气化冲击焊接工艺研究
陈树君()
1.北京工业大学汽车结构部件先进制造技术教育部工程研究中心 北京 100124
2.Impulse Manufacturing Laboratory, the Ohio State University, Columbus 43211, USA
Study on Vaporizing Foil Actuator Welding Process of 5A06/0Cr18Ni10Ti with Interlayer
Shan SU()
1.Engineering Research Center of Advanced Manufacturing Technology for Automotive Components, Ministry of Education, Beijing University of Technology, Beijing 100124, China
2. Impulse Manufacturing Laboratory, the Ohio State University, Columbus 43211, USA
引用本文:

陈树君. 基于中间过渡层的 5A06/0Cr18Ni10Ti 气化冲击焊接工艺研究[J]. 金属学报, 2019, 55(8): 1041-1048.
Shan SU. Study on Vaporizing Foil Actuator Welding Process of 5A06/0Cr18Ni10Ti with Interlayer[J]. Acta Metall Sin, 2019, 55(8): 1041-1048.

全文: PDF(8480 KB)   HTML
摘要: 

利用气化冲击焊接技术,制备了力学性能良好基于中间层的5A06铝合金与0Cr18Ni10Ti不锈钢气化冲击焊接接头,中间层3003铝合金与飞板5A06铝合金和靶板0Cr18Ni10Ti界面焊接良好,接头结合区域呈圆环状。通过信号采集系统分析了铝箔气化时间和电流随能量输入的变化,采用OM和SEM分析了接头界面的微观形貌和元素分布。研究了能量输入对铝箔气化的时刻和接头力学性能的影响。结果表明,随着能量输入的增加,铝箔气化所需时间减小,最终碰撞速率增大,从而使焊接区域直径增大;接头的抗拉力和抗剪力随能量输入的增大而增大。当能量输入为9 kJ时,接头的最大抗拉力为44.0 kN,抗剪力为2.1 kN;5A06/3003界面呈中间对称波状结合,3003/0Cr18Ni10Ti界面以金属间化合物连接,结合区域错位分布。

关键词 中间过渡层异种材料气化冲击焊接光子多普勒测速    
Abstract

Aluminum alloy and stainless steel composite structure have been widely used in the chemical industry. Aluminum alloy and stainless steel are difficult to weld by fusion weld method because of differences in physical and chemical properties. Joints of aluminum alloy 5A06 and 0Cr18Ni10Ti stainless steel with good mechanical properties were created using vaporizing foil actuator welding with an interlayer. The interlayer was welded to both the target and the flyer on a ring-shaped welded area. The influences of the input energy on the time of the occurrence of vaporization and mechanical properties of the joints were analyzed. Single collection system and photonic Doppler velocimetry system were used to analyze the burst time, discharge current and voltage changes with energy input increased, and microstructure and element distribution were analyzed by OM and SEM with EDS. The results show that as the input energy increases, the vaporization of the foil occurred earlier and achieved higher impact velocity, resulting in a larger diameter of the welded area. The peak tensile load and shear load were increased with energy input increased, the peak tensile load is 44.0 kN and peak shear load is 2.1 kN with 9 kJ energy input. The Al3003 was joint to 5A06 in symmetric wavy pattern and joint with 0Cr18Ni10Ti stainless steel by intermetallic compounds. The joining areas were not aligned.

Key wordsinterlayer    dissimilar material    vaporizing foil actuator welding    photonic Doppler
收稿日期: 2018-09-12     
ZTFLH:  TG456.9  
基金资助:国家自然科学基金项目(No.51575012)
图1  铝箔形状示意图及实验装置
MaterialSiFeCuMnMgZnTiNiCCrNAl
5A060.400.40.10.5~0.85.8~6.80.20.1----Bal.
30030.600.70.05~0.201.0~1.5-0.1-----Bal.
0Cr18Ni10Ti0.75Bal.-2.0--0.79~120.0817~190.1-
表1  材料化学成分
图2  信号采集系统与光子多普勒测速(PDV)原理图
图3  抗拉和抗剪性能测试示意图
图4  能量输入为7 kJ时铝箔的电流、电压和飞板及中间层的撞击速率
图5  铝箔的电流、气化时间和碰撞速率随能量输入变化
图6  不同能量输入下抗剪测试结果
图7  不同能量输入下气化冲击焊接(VFAW)接头抗拉失效试样断面的外观形貌
图8  不同能量输入下5A06/3003界面形貌OM像
图9  能量输入7 kJ时3003/0Cr18Ni10Ti界面形貌的SEM像
图10  图9b和c中3003/0Cr18Ni10Ti界面不同位置元素线分布
[1] Li Y J. Welding of Light Metals [M]. Beijing: National Defense Industry Press, 2011: 17
[1] (李亚江. 轻金属焊接技术 [M]. 北京: 国防工业出版社, 2011: 17)
[2] Zhang H T, Liu J H, Feng J C. Effect of auxiliary TIG arc on formation and microstructures of aluminum alloy/stainless steel joints made by MIG welding-brazing process [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2831
[3] Shi Y, Wen J X, Huang J K, et al. Study on DE-GMAW MIG-brazing method for bonding steel with aluminum [J]. J. Mech. Eng., 2011, 47(16): 25
[3] (石 玗, 温俊霞, 黄健康等. 基于旁路耦合电弧的铝钢MIG熔钎焊研究 [J]. 机械工程学报, 2011, 47(16): 25)
[4] Lv S X, Yang X D, Wan L, et al. Study on interfacial structure and mechanical properties of high frequency induction brazed joint of aluminum alloys to pre-coated stainless steel [J]. Trans. China Weld. Inst., 2017, 38(3): 22
[4] (吕世雄, 杨旭东, 万 龙等. 预镀层不锈钢/铝异种金属高频感应钎焊接头界面及力学性能分析 [J]. 焊接学报, 2017, 38(3): 22)
[5] Ben-Artzy A, Stern A, Frage N, et al. Interface phenomena in aluminium-magnesium magnetic pulse welding [J]. Sci. Technol. Weld. Joining, 2008, 13: 402
[6] Yu H P, Xu Z D, Li C F, et al. Experimental research on magnetic pulse joining of 3A21 aluminum alloy-20 steel tubes [J]. Acta Metall. Sin., 2011, 47: 197
[6] (于海平, 徐志丹, 李春峰等. 3A21铝合金-20钢管磁脉冲连接实验研究 [J]. 金属学报, 2011, 47: 197)
[7] Wang T H, Sidhar H, Mishra R S, et al. Friction stir scribe welding technique for dissimilar joining of aluminium and galvanised steel [J]. Sci. Technol. Weld. Joining, 2018, 23: 249
[8] Xue P, Zhang X X, Wu L H, et al. Research progress on friction stir welding and processing [J]. Acta Metall. Sin., 2016, 52: 1222
[8] (薛 鹏, 张星星, 吴利辉等. 搅拌摩擦焊接与加工研究进展 [J]. 金属学报, 2016, 52: 1222)
[9] Dehghani M, Mousavi S A A A, Amadeh A. Effects of welding parameters and tool geometry on properties of 3003-H18 aluminum alloy to mild steel friction stir weld [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 1957
[10] Winnicki M, Ma?achowska A, Korzeniowski M, et al. Aluminium to steel resistance spot welding with cold sprayed interlayer [J]. Surf. Eng., 2018, 34: 235
[11] Han J H, Ahn J P, Shin M C. Effect of interlayer thickness on shear deformation behavior of AA5083 aluminum alloy/SS41 steel plates manufactured by explosive welding [J]. J. Mater. Sci., 2003, 38: 13
[12] Zheng Y M. Explosion welding and dissimilar metals welding [J]. Weld. Technol., 2001, 30(5): 25
[12] (郑远谋. 爆炸焊与异种金属的焊接 [J]. 焊接技术, 2001, 30(5): 25)
[13] Wang D W, Xiu S C. Effect of bonding temperature on the interfacial micro-structure and performance of mild steel/austenite stainless steel diffusion-bonded joint [J]. Acta Metall. Sin., 2017, 53: 567
[13] (王大伟, 修世超. 焊接温度对碳钢/奥氏体不锈钢扩散焊接头界面组织及性能的影响 [J]. 金属学报, 2017, 53: 567)
[14] Pan F, Cui L, Qian W, et al. Microstructures and mechanical properties of dual-beam laser keyhole welded joints of aluminum alloys to stainless steels [J]. Acta Metall. Sin., 2016, 52: 1388
[14] (潘 峰, 崔 丽, 钱 伟等. 铝合金/不锈钢双光束激光深熔焊接接头组织及力学性能 [J]. 金属学报, 2016, 52: 1388)
[15] Vivek A, Hansen S R, Liu B C, et al. Vaporizing foil actuator: A tool for collision welding [J]. J. Mater. Process. Technol., 2013, 213: 2304
[16] Vivek A, Taber G A, Johnson J R, et al. Electrically driven plasma via vaporization of metallic conductors: A tool for impulse metal working [J]. J. Mater. Process. Technol., 2013, 213: 1311
[17] Vivek A, Daehn G S. Vaporizing foil actuator: A versatile tool for high energy-rate metal working [J]. Procedia Eng., 2014, 81: 2129
[18] Li X J, Ma H H, Shen Z W. Research on explosive welding of aluminum alloy to steel with dovetail grooves [J]. Mater. Des., 2015, 87: 815
[19] Zhang Y, Babu S S, Prothe C, et al. Application of high velocity impact welding at varied different length scales [J]. J. Mater. Process. Technol., 2011, 211: 944
[20] Vivek A, Brune R C, Hansen S R, et al. Vaporizing foil actuator used for impulse forming and embossing of titanium and aluminum alloys [J]. J. Mater. Process. Technol., 2014, 214: 865
[21] Hahn M, Weddeling C, Taber G, et al. Vaporizing foil actuator welding as a competing technology to magnetic pulse welding [J]. J. Mater. Process. Technol., 2016, 230: 8
[22] Liu B, Vivek A, Daehn G S. Joining sheet aluminum AA6061-T4 to cast magnesium AM60B by vaporizing foil actuator welding: Input energy, interface, and strength [J]. J. Manuf. Process., 2017, 30: 75
[23] Liu B, Vivek A, Presley M, et al. Dissimilar impact welding of 6111-T4, 5052-H32 aluminum alloys to 22MnB5, DP980 steels and the structure-property relationship of a strongly bonded interface [J]. Metall. Mater. Trans., 2018, 49A: 899
[24] Nassiri A, Zhang S Y, Lee T, et al. Numerical investigation of CP-Ti & Cu110 impact welding using smoothed particle hydrodynamics and arbitrary Lagrangian-Eulerian methods [J]. J. Manuf. Process., 2017, 28: 558
[25] Vivek A, Liu B C, Hansen S R, et al. Accessing collision welding process window for titanium/copper welds with vaporizing foil actuators and grooved targets [J]. J. Mater. Process. Technol., 2014, 214: 1583
[1] 薛鹏, 张星星, 吴利辉, 马宗义. 搅拌摩擦焊接与加工研究进展*[J]. 金属学报, 2016, 52(10): 1222-1238.
[2] 秦国梁 苏玉虎 王术军. 铝合金/镀锌钢板脉冲MIG电弧熔-钎焊接头组织与性能[J]. 金属学报, 2012, 48(8): 1018-1024.
[3] 王东 刘杰 肖伯律 马宗义. 铝合金/镁合金搅拌摩擦焊接界面处Mg/Al反应及接头力学性能[J]. 金属学报, 2010, 46(5): 589-594.