Please wait a minute...
金属学报  2014, Vol. 50 Issue (10): 1163-1169    DOI: 10.11900/0412.1961.2014.00163
  本期目录 | 过刊浏览 |
Au反点阵列孔径对Au/TiO2复合薄膜光催化性能的影响
祁洪飞1(), 刘大博1, 滕乐金1, 王天民2, 罗飞1, 田野1
1 中航工业北京航空材料研究院钢与稀贵金属研究所, 北京 100095
2 北京航空航天大学凝聚态物理与材料物理研究中心, 北京 100191
EFFECT OF PORE SIZES OF Au ANTIDOT ARRAYS ON PHOTOCATALYSIS PERFORMANCE OF Au/TiO2 COMPOSITE FILMS
QI Hongfei1(), LIU Dabo1, TENG Lejin1, WANG Tianmin2, LUO Fei1, TIAN Ye1
1 Department of Steel and Rare-Noble Metals, AVIC Beijing Institute of Aeronautical Materials, Beijing 100095
2 Center of Condensed Matter and Material Physics, Beihang University, Beijing 100191
引用本文:

祁洪飞, 刘大博, 滕乐金, 王天民, 罗飞, 田野. Au反点阵列孔径对Au/TiO2复合薄膜光催化性能的影响[J]. 金属学报, 2014, 50(10): 1163-1169.
Hongfei QI, Dabo LIU, Lejin TENG, Tianmin WANG, Fei LUO, Ye TIAN. EFFECT OF PORE SIZES OF Au ANTIDOT ARRAYS ON PHOTOCATALYSIS PERFORMANCE OF Au/TiO2 COMPOSITE FILMS[J]. Acta Metall Sin, 2014, 50(10): 1163-1169.

全文: PDF(5005 KB)   HTML
摘要: 

通过对胶体晶体模板的反向复制, 制备了反点阵列孔径各异的Au/TiO2复合薄膜. 采用SEM, AFM, XRD, UV-Vis和四探针测试仪等手段对复合薄膜的结构和光催化性能进行了表征. 通过对胶体晶体模板和反点阵列几何模型的计算, 讨论了Au反点阵列在TiO2薄膜表面的覆盖面积与模板中微球粒径的关系. 结果表明: 反点阵列孔径对复合薄膜的光催化性能有显著影响. 孔径增大, 使反点阵列的导电性能提高, 载流子的输运效率增强, 促使光催化性能的提高; 同时, 孔径增大又造成光生电子向反点阵列迁徙过程中的复合几率加大, 反而使光催化性能降低. 2种作用共同导致了Au/TiO2复合薄膜的光催化性能随Au反点阵列孔径的增大出现先提高后降低的变化规律, 并在孔径为3.3 μm时达到最高.

关键词 Au反点阵列TiO2孔径光催化性能    
Abstract

Au/TiO2 composite films with different pore sizes of antidot arrays are prepared by inversion replication of colloidal crystal templates. The microstructure and the photocatalysis performance of all samples are characterized by using SEM, AFM, XRD, UV-Vis and four-point probe. Relations between the coverage of antidot arrays on the surface of TiO2 films and the diameters of template microspheres are discussed through calculation on geometric model of colloidal crystal templates and antidot arrays. The results show that the pore size of Au antidot arrays significantly influences the photocatalysis performance of the composite films. With the pore size increasing, the conducting ability and the charge carriers transport efficiency enhances. This is responsible for the improvement of photocatalysis performance. At the same time, the recombination probability of photoinduced electrons and holes increases during the charge carrier migration with the pore size decreasing, which result in the decrease of the photocatalysis performance. The photocatalysis performance increases rapidly and then decreases gradually with the pore size increasing, which is the result of the aforementioned two aspects of factors. The photocatalysis performance of the composite films reaches the maximum value when the pore size of Au antidot arrays is 3.3 μm.

Key wordsAu antidot array    TiO2    pore size    photocatalysis performance
    
ZTFLH:  TG146.3  
基金资助:* 中航工业北京航空材料研究院创新基金资助项目 KF53090315
作者简介: null

祁洪飞, 男, 1978年生, 高级工程师, 博士

图1  Au/TiO2复合光薄膜的结构示意图
图2  TiO2薄膜及在其表面自组装的单层胶体晶体的SEM像
图3  TiO2薄膜的XRD谱
图4  Au反点阵列的SEM像
图5  亚甲基兰(MB)溶液的UV-Vis吸收光谱
图6  降解率与反点阵列孔径的关系
图7  二维胶体晶体模板和反点阵列薄膜的的几何结构模型
图8  不同孔径Au/ TiO2光催化剂的方块电阻
图9  2.3 μm孔径Au/TiO2复合薄膜的AFM分析
图10  反点阵列高度与模板中PS微球直径的关系
图11  反点阵列空洞中的载流子迁移示意图
[1] Chen X, Liu L, Yu P Y, Mao S S. Science, 2011; 331: 746
[2] Wang H Q, Shen H, Ba D C, Wang B W, Wen L S, Chen D. Acta Metall Sin (Engl Lett), 2005; 18: 194
[3] Niibe M, Sano K, Kotaka T, Kawakami R, TominAua K, Nakano Y. J Appl Phys, 2013; 113: 126101
[4] Li Z G, Miyake S. Acta Metall Sin, 2010; 46: 13
[4] (李铸国, 三宅正司. 金属学报, 2010; 46: 13)
[5] Zhang M, Lin G Q, Dong C, Wen L S. Acta Metall Sin, 2007; 43: 509
[5] (张 敏, 林国强, 董 闯, 闻立时. 金属学报, 2007; 43: 509)
[6] Wang T M, Wang Y. Mater China, 2010; 29: 60
[6] (王天民, 王 莹. 中国材料进展, 2010; 29: 60)
[7] Zhang Y G, Wang Y X. J Appl Phys, 2011; 110: 033519
[8] Zeng Y, Liu J T, Qian W J, Gao J H. Acta Metall Sin (Engl Lett), 2005; 18: 363
[9] Wang Y, Zhao D, Ji H, Liu G, Chen C, Ma W, Zhu H, Zhao J. J Phys Chem, 2010; 114C: 17728
[10] Pandikumar A, Murugesan S, Ramaraj R. Appl Mater Interf, 2010; 2: 1912
[11] Zhang Y, Wang Q, Xu J, Ma S. Appl Surf Sci, 2012; 258: 10104
[12] Chiarello G L, Ferri D, Selli E. J Catal , 2011; 280: 168 
[13] Lucjan C, Maudalena J, Adam S, Zofia P, Aunieszka W, Stefan W, Marek M. Appl Catal, 2013; 130B: 152
[14] Stepanov A L. Rev Adv Mater Sci, 2012; 30: 150
[15] Adochite R C, Munteanu D, Torrell M, Cunha L, Alves E, Barradas N P, Cavaleiro A, Riviere J P, Le Bourhis E, Eyidi D, Vaz F. Appl Surf Sci, 2012; 258: 4028
[16] Chakravadhanula V S K, Hrkac T, Zaporojtchenko V, Podschun R, Kotnur V G, Kulkarni A, Strunskus T, Kienle L, Faupel F. J Nanosci Nanotechno, 2011; 11: 4893
[17] Wang C, Yin L, Zhang L, Liu N, Lun N, Qi Y. Appl Mater Interf, 2010; 2: 3373
[18] Zhang X, Meng H, Sun T, Zhou C B. Acta Metall Sin, 2008; 44: 1394
[18] (张 霞, 孟 皓, 孙 挺, 周春彬. 金属学报, 2008; 44: 1394)
[19] Lazau C, Ratiu C, Orha C, Pode R, Manea F. Mater Res Bull, 2011; 46: 1916
[20] Qi H F, Hao W C, Xu H Z, Zhang J Y, Wang T M. Colloid Polym Sci, 2009; 287: 243
[21] Minchitha K U, Geetha Balakrishna R. Mater Chem Phys, 2012; 136: 720
[1] 张静莹 齐民 杨大颐 艾红军. ZnHA/TiO2复合涂层的制备及生物相容性[J]. 金属学报, 2011, 47(4): 429-434.
[2] 李铸国 三宅正司. 反应磁控溅射法高速低温沉积锐钛矿相TiO2薄膜的结构与光学性能[J]. 金属学报, 2010, 46(1): 13-18.
[3] 凤仪; 朱震刚; 陶宁; 郑海务 . 闭孔泡沫铝的导热性能[J]. 金属学报, 2003, 39(8): 817-820 .