Please wait a minute...
金属学报  2009, Vol. 45 Issue (3): 356-362    
  论文 本期目录 | 过刊浏览 |
挤压铸造凝固过程热--力耦合模拟 I.数学模型及求解方法
韩志强;朱维;柳百成
清华大学机械工程系先进成形制造教育部重点实验室; 北京 100084
THERMOMECHANICAL MODELING OF SOLIDIFICATION PROCESS OF SQUEEZE CASTING I. Mathematic Model and Solution Methodology
HAN Zhiqiang;ZHU Wei;LIU Baicheng
Key Laboratory for Advanced Materials Processing Technology; Ministry of Education; Department of Mechanical Engineering; Tsinghua University; Beijing 100084
引用本文:

韩志强 朱维 柳百成. 挤压铸造凝固过程热--力耦合模拟 I.数学模型及求解方法[J]. 金属学报, 2009, 45(3): 356-362.
, , . THERMOMECHANICAL MODELING OF SOLIDIFICATION PROCESS OF SQUEEZE CASTING I. Mathematic Model and Solution Methodology[J]. Acta Metall Sin, 2009, 45(3): 356-362.

全文: PDF(1042 KB)  
摘要: 

开发了模拟挤压铸造凝固过程中铸件温度、应力及形状变化的有限元模型. 该模型包括了凝固过程中潜热的释放和体积收缩效应、界面传热和变形的相互作用以及凝固壳在冲头压力下的变形等. 应力场模拟中采用热弹粘塑性本构模型描述凝固壳的变形, 并对液相和糊状区进行了特殊处理. 利用接触算法处理铸件与模具界面, 并且采用一种特殊的迭代法来模拟冲头的运动. 该模型可以用来研究模具设计和工艺参数(如模具温度及冲头压力等)对铸件质量的影响.

关键词 挤压铸造热--力耦合有限元方法本构模型    
Abstract

A coupled thermomechanical finite element model has been developed to simulate the temperature, stress and shape developments during the solidification process of squeeze casting. The model includes the effect of latent heat and volume shrinkage due to solidification, the mutual dependence of interfacial heat transfer and casting deformation, and the mechanical behavior of the solidified shell under the punch pressure. The stress model features a thermo--elasto--viscoplastic constitutive equation that accounts for the response of the solidified shell as well as a special treatment given to the liquid and mushy zones. A contact algorithm was employed for the casting/die interface, and an iterative algorithm was employed to simulate the movement of the punch. The model can be used to investigate the effects of die design and process parameters (die temperature, punch pressure, etc.) on the quality of castings.

Key wordssqueeze casting    thermomechanical coupling    finite element method    constitutive model
收稿日期: 2008-06-12     
ZTFLH: 

TG244.3

 
基金资助:

国家自然科学基金项目50675113和教育部留学回国人员科研启动基金资助

作者简介: 韩志强, 男, 1968年生, 副教授, 博士

[1] Qi P X. Spec Cast Nonferrous Alloys, 1998; (4): 32
(齐丕骧. 特种铸造及有色合金, 1998; (4): 32)

[2] Ghomashchi M R, Vikhrov A. J Mater Process Technol, 2000; 101: 1
[3] Luo S J, Chen B G, Qi P X. Liquid Forging and Squeeze Casting Technology. Beijing: Chemical Industry Press, 2007: 1
(罗守靖, 陈炳光, 齐丕骧. 液态模锻与挤压铸造技术. 北京: 化学工业出版社, 2007: 1)

[4] Song Y Q, Liu Z B, Zhou D J. J Plast Eng, 1997; 4(3): 4
(宋玉泉, 刘助柏, 周大隽. 塑性工程学报, 1997; 4(3): 4)

[5] Bai Y H, Liu J S, Ren C Y. Foundry, 2004; 53: 655
(白彦华, 刘金生, 任春艳. 铸造, 2004; 53: 655)

[6] Liu J S, Bai Y H, Li C X. J Shenyang Univ Technol, 2004;26: 506
(刘金生, 白彦华, 李晨曦. 沈阳工业大学学报, 2004; 26: 506)

[7] Li R D, Hou J, Yu Q, Bai Y H. J Shenyang Univ Technol, 2005; 27: 138
(李荣德, 侯君, 于茜, 白彦华. 沈阳工业大学学报, 2005; 27: 138)

[8] Lee J H, Kim H S, Won C W. Mater Sci Eng, 2002; A338: 182
[9] Lee J H, Kim H S, Hong S I. J Mater Process Technol, 1999; 96: 188
[10] Yu A, Li N, Hu H. Multiphase Phenomena and CFD Modelling in Materials Processes, Warrendale: Minerals, Metals and Materials Society, 2004: 189
[11] Hu H, Yu A. Model Simul Mater Sci Eng, 2002; 10: 1
[12] Lewis R W, Postek E W, Han Z Q. Int J Numer Methods Heat Fluid Flow, 2006; 16: 539
[13] Postek E W, Lewis R W, Gethin D T. J Mater Process Technol, 2005; 159: 338
[14] Lewis R W, Ravindran K. Int J Numer Methods Eng, 2000; 47: 29
[15] Zienkiewicz O C, Taylor R L. The Finite Element Method, Vol.1, 5th Ed., Oxford: Butterworth–Heinemann, 2000: 689
[16] Dupont T, Fairweather G, Johnson J P. SIAM J Numer Anal, 1974; 11: 392
[17] Li C S, Thomas B G. Metall Mater Trans, 2004; 35B: 1151
[18] Lemaitrc J, Chaboche J L. Mechanics of Solid Materials. Cambridge University Press, 1990; 556
[19] Koric S, Thomas B G. Int J Numer Methods Eng, 2006; 66: 1955
[20] Tan L J, Zabaras N. Mater Sci Eng, 2005; 404A: 197
[21] Krishna P. PhD Thesis, The University of Michigan, 2001

[1] 王凯, 晋玺, 焦志明, 乔珺威. CrFeNi中熵合金在宽温域拉伸条件下的力学行为与变形本构方程[J]. 金属学报, 2023, 59(2): 277-288.
[2] 余滨杉,王社良,杨涛,樊禹江. 基于遗传算法优化的SMABP神经网络本构模型[J]. 金属学报, 2017, 53(2): 248-256.
[3] 孙朝阳, 郭祥如, 黄杰, 郭宁, 王善伟, 杨竞. 耦合孪生的TWIP钢单晶体塑性变形行为模拟研究[J]. 金属学报, 2015, 51(3): 357-363.
[4] 孙朝阳, 黄杰, 郭宁, 杨竞. 基于位错密度的Fe-22Mn-0.6C型TWIP钢物理本构模型研究[J]. 金属学报, 2014, 50(9): 1115-1122.
[5] 张劲,邓运来,杨金龙,张新明. 2124铝合金蠕变时效实验及本构模型研究[J]. 金属学报, 2013, 49(3): 379-384.
[6] 朱祎国,张杨,赵聃. 多晶NiTi形状记忆合金相变的细观力学本构模型[J]. 金属学报, 2013, 49(1): 123-128.
[7] 常正凯, 肖金泉, 陈育秋, 刘山川, 宫骏, 孙超. 电弧离子镀沉积磁性薄膜的研究[J]. 金属学报, 2012, 48(5): 547-554.
[8] 贾斌 彭艳. 铌微合金钢高温变形的本构关系[J]. 金属学报, 2011, 47(4): 507-512.
[9] 韩志强 李金玺 杨文 赵海东 柳百成. 铝合金挤压铸造过程微观孔洞形成的建模与仿真[J]. 金属学报, 2011, 47(1): 7-16.
[10] 朱维 韩志强 柳百成. 挤压铸造凝固过程热--力耦合模拟 II. 模拟计算及实验验证[J]. 金属学报, 2009, 45(3): 363-368.
[11] 朱维; 韩志强; 贾湛湛; 赵海东; 柳百成 . 挤压铸造铝合金弹粘塑性本构模型[J]. 金属学报, 2008, 44(4): 440-444 .
[12] 方刚; 曾攀 . 金属板料冲裁过程的有限元模拟[J]. 金属学报, 2001, 37(6): 653-657 .
[13] 钟勇; 阎德胜; 苏国跃; 杨柯 . LY12合金的挤压铸造微观偏析及改善方法[J]. 金属学报, 2001, 37(1): 42-46 .