Please wait a minute...
金属学报  2009, Vol. 45 Issue (9): 1042-1048    
  论文 本期目录 | 过刊浏览 |
Ti1-xVx及Ti1-xNbx合金晶格参数、体模量及相稳定性的第一原理研究
赵宇飞1;2; 符跃春1; 胡青苗2;  杨锐2
1) 广西大学材料科学与技术学院有色金属及材料加工新技术教育部重点实验室; 南宁 530004 
2) 中国科学院金属研究所沈阳材料科学国家(联合)实验室; 沈阳 110016
FIRST-PRINCIPLES INVESTIGATIONS OF LATTICE PARAMETERS, BULK MODULI AND PHASE STABILITIES OF Ti1-xVx AND Ti1-xNbx ALLOYS
ZHAO Yufei1;2; FU Yuechun1;  HU Qingmiao2; YANG Rui2
1) Key Laboratory of New Processing Technology for Nonferrous Metals and Materials; Ministry of Education; Guangxi University; Nanning 530004
2) Shenyang National Laboratory for Materials Science; Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016
引用本文:

赵宇飞 符跃春 胡青苗 杨锐. Ti1-xVx及Ti1-xNbx合金晶格参数、体模量及相稳定性的第一原理研究[J]. 金属学报, 2009, 45(9): 1042-1048.
, , , . FIRST-PRINCIPLES INVESTIGATIONS OF LATTICE PARAMETERS, BULK MODULI AND PHASE STABILITIES OF Ti1-xVx AND Ti1-xNbx ALLOYS[J]. Acta Metall Sin, 2009, 45(9): 1042-1048.

全文: PDF(882 KB)  
摘要: 

利用基于密度泛函理论的第一原理精确Muffin-Tin轨道(EMTO)方法结合相干势近似(CPA), 研究了Ti1-xVx与Ti1-xNbx合金中α(α'), ω及β相的晶格常数、体模量及相稳定性随成分的变化. 结果表明, Ti-V合金中随着V含量的增加, α(α')相晶格参数aα$减小, cα/aα略有增加, ω相晶格参数aωcω/aω同时减小, β相晶格参数aβ减小; Ti-Nb合金中随Nb含量的增加, aα几乎不变, cα/aα增加, aω增加, cω/aω减小, aβ几乎不变. 随V及Nb含量的增加, ω与β相的晶格错配度线性增加. V和Nb均能提高三相的体模量, 且增加 β相对于其它两相的稳定性.

关键词 钛合金晶格参数体模量相稳定性第一原理计算    
Abstract

Although Ti-V and Ti-Nb binary systems are subjected to many investigations, there remain some issues open for discussion, among which are the lattice parameter misfit and phase boundary between the non-equilibrium ω and β phases. On the other hand, the experimental elastic moduli of the non-equilibrium phases are rarely reported due to the difficulty of the measurement. In this paper, the lattice parameters, bulk moduli and phase stabilities of α(α'), ω, and β phases of binary Ti-V(Nb) alloys are investigated by the use of first-principles exact Muffin-Tin orbital method in combination with coherent potential approximation. It is shown that, with the increase in the V content, the lattice parameter aα of the α(α') phase decreases, whereas cα/aα slightly increases; aω and cω/aω of the ω phase and aβ of the $\beta$ phase decrease. For Ti-Nb alloy, with increasing Nb content, aα keeps almost unchanged whereas cα/aα increases; aω increases and cω/aω deceases; aβ does not change significantly. The lattice parameter misfit between the ω and β phases increases with increasing V or Nb content. Both V and Nb harden the bulk modulus of Ti and improve the phase stability of the β phase relative to the α(α') and ω phases. The theoretical predictions are compared in detail with the available experimental data.

Key wordsTi alloy    lattice parameter    bulk modulus    phase stability    first-principle calculation
收稿日期: 2009-03-09     
ZTFLH: 

TG139

 
基金资助:

国家重点基础研究发展计划项目2006CB605104, 国家自然科学基金重点项目50631030及广西大学有色金属及材料加工技术教育部重点实验室开放基金6XKFJ-06资助

作者简介: 赵宇飞, 男, 1974年生, 硕士生

[1] Leyens C, Peters M. Titanium and Titanium Alloys: Fundamentals and Applications. Weinheim Germany: Wiley VCH, 2003: 1
[2] Collings E W. The Physical Metallurgy of Titanium Alloys. Metals Park, OH: American Society for Metals, 1984: 75
[3] Hao Y L, Li S J, Sun S Y, Zheng C Y, Yang R, Acta Biomater, 2007; 3: 277
[4] Sikka S K, Vohra Y K, Chidambaram R. Solid State Comm, 1982; 42: 205
[5] McCabe K K, Sass SL. Philos Mag, 1971; 23: 957
[6] Hanada S, Izumi O. Metall Trans, 1986; 17A: 1409
[7] Aurelio G, Guillermet A F, Cuello G J, Campo J. Metall Mater Trans, 2002; 33A: 1307
[8] Dobromyslov A V, Elkin V A. Scr Mater, 2001; 44: 905
[9] Collings E W. Phys Rev, 1974; 9B: 3989
[10] Hu Q M, Li S J, Hao Y L, Yang R, Johansson B, Vitos L. Appl Phys Lett, 2008; 93: 121902
[11] Martin R M. Electronic Structure: Basic Theory and Practical Methods. Cambridge, UK: Cambridge University Press, 2005: 119
[12] Vitos L. The EMTO Method and Applications in Computational Quantum Mechanics for Materials Engineers. London: Springer–Verlag, 2007: 1
[13] Vitos L. Phys Rev, 2001; 64B: 014107
[14] Perdew J P, Burke K, Ernzerhof M. Phys Rev Lett, 1996; 77: 3865
[15] Soven P. Phys Rev, 1967; 156: 809
[16] Gy¨orffy B L. Phys Rev, 1972; 5B: 2382

[17] Vitos L, Abrikosov I A, Johansson B. Phys Rev Lett, 2001; 87: 156401
[18] Hu Q M, K´adas K, Hogmark S, Yang R, Johansson B, Vitos L. Appl Phys Lett, 2007; 91: 12918
[19] Hu Q M, Yang R, Lu J M, Wang L, Johansson B, Vitos L. Phys Rev, 2007; 76B: 224201
[20] Lu J M, Hu Q M, Yang R. Acta Mater, 2007; 56: 4913
[21] Kittel C. Introduction to Solid State Physics. New York: John Wiley and Sons, 1971: 96
[22] Leibovitch C H, Rabinkin A, Talianker M. Metall Trans, 1981; 12A: 1513
[23] Ming L C, Manghnani M H, Katahara R W. Acta Metall, 1981; 29: 479
[24] Ikehata H, Nagasako N, Furuta T, Fukumoto A, Miwa K, Saito T. Phys Rev, 2004; 70B: 174113
[25] Sun J, Yao Q, Xing H, Guo W Y. J Phys: Condens Matter, 2007; 19: 486215
[26] Hariharan Y, Janawadkar M P, Radhakrishnan R S, Terrance A L E, Dixit G A, Raghunathan V S. Pramana, 1986; 26: 513
[27] Kim H Y, Ikehara Y, Kim J I, Hosoda H, Miyazaki S. Acta Mater, 2006; 54: 2419
[28] Katahara KW, Manghnani M H, Fisher E S. J Phys, 1979; 9F: 773
[29] Grimall G. Phys Scr, 1976; 13: 59
[30] S¨oderlind P, Johansson B. Thermochim Acta, 1993; 218: 145
[31] Fisher E S, Dever D. Acta Mater, 1970; 18: 265
[32] Balcerzak A T, Sass S L. Met Mater Trans, 1972; 3B: 1073
[33] Ahuja R, Wills J M, Johansson B, Eriksson O. Phys Rev, 1993; 48B: 16269
[34] Verma A K, PModak P, Rao R S, Godwal B K, Jeanloz R. Phys Rev, 2007; 75B: 014109
[35] Kutepov A L, Kutepova S G. Phys Rev, 2003; 67B: 132102

[1] 赵平平, 宋影伟, 董凯辉, 韩恩厚. 不同离子对TC4钛合金电化学腐蚀行为的协同作用机制[J]. 金属学报, 2023, 59(7): 939-946.
[2] 张滨, 田达, 宋竹满, 张广平. 深潜器耐压壳用钛合金保载疲劳服役可靠性研究进展[J]. 金属学报, 2023, 59(6): 713-726.
[3] 李述军, 侯文韬, 郝玉琳, 杨锐. 3D打印医用钛合金多孔材料力学性能研究进展[J]. 金属学报, 2023, 59(4): 478-488.
[4] 朱智浩, 陈志鹏, 刘田雨, 张爽, 董闯, 王清. 基于不同 α / β 团簇式比例的Ti-Al-V合金的铸态组织和力学性能[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] 王海峰, 张志明, 牛云松, 杨延格, 董志宏, 朱圣龙, 于良民, 王福会. 前置渗氧对TC4钛合金低温等离子复合渗层微观结构和耐磨损性能的影响[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] 崔振铎, 朱家民, 姜辉, 吴水林, 朱胜利. Ti及钛合金表面改性在生物医用领域的研究进展[J]. 金属学报, 2022, 58(7): 837-856.
[7] 李细锋, 李天乐, 安大勇, 吴会平, 陈劼实, 陈军. 钛合金及其扩散焊疲劳特性研究进展[J]. 金属学报, 2022, 58(4): 473-485.
[8] 赵宇宏, 景舰辉, 陈利文, 徐芳泓, 侯华. 装甲防护陶瓷-金属叠层复合材料界面研究进展[J]. 金属学报, 2021, 57(9): 1107-1125.
[9] 颜孟奇, 陈立全, 杨平, 黄利军, 佟健博, 李焕峰, 郭鹏达. 热变形参数对TC18钛合金β相组织及织构演变规律的影响[J]. 金属学报, 2021, 57(7): 880-890.
[10] 张婷, 李仲杰, 许浩, 董安平, 杜大帆, 邢辉, 汪东红, 孙宝德. 激光沉积法制备Ti/TNTZO层状材料及其组织性能[J]. 金属学报, 2021, 57(6): 757-766.
[11] 戴进财, 闵小华, 周克松, 姚凯, 王伟强. 预变形与等温时效耦合作用下Ti-10Mo-1Fe/3Fe层状合金的力学性能[J]. 金属学报, 2021, 57(6): 767-779.
[12] 李金山, 唐斌, 樊江昆, 王川云, 花珂, 张梦琪, 戴锦华, 寇宏超. 高强亚稳β钛合金变形机制及其组织调控方法[J]. 金属学报, 2021, 57(11): 1438-1454.
[13] 杨锐, 马英杰, 雷家峰, 胡青苗, 黄森森. 高强韧钛合金组成相成分和形态的精细调控[J]. 金属学报, 2021, 57(11): 1455-1470.
[14] 林彰乾, 郑伟, 李浩, 王东君. 放电等离子烧结TA15钛合金及石墨烯增强TA15复合材料微观组织与力学性能[J]. 金属学报, 2021, 57(1): 111-120.
[15] 张海军, 邱实, 孙志梅, 胡青苗, 杨锐. 无序β-Ti1-xNbx合金自由能及弹性性质的第一性原理计算:特殊准无序结构和相干势近似的比较[J]. 金属学报, 2020, 56(9): 1304-1312.