Please wait a minute...
金属学报  2017, Vol. 53 Issue (2): 129-139    DOI: 10.11900/0412.1961.2016.00237
  本期目录 | 过刊浏览 |
1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究
惠亚军1,2(),潘辉1,李文远1,刘锟1,陈斌1,崔阳1
1 首钢技术研究院薄板研究所 北京 100043
2 首钢总公司绿色可循环钢铁流程北京市重点实验室 北京 100043
Study on Heating Schedule of 1000 MPa Grade Nb-Ti Microalloyed Ultra-High Strength Steel
Yajun HUI1,2(),Hui PAN1,Wenyuan LI1,Kun LIU1,Bin CHEN1,Yang CUI1
1 Sheet Metal Research Institute, Shougang Research Institute of Technology, Beijing 100043, China
2 Beijing Key Laboratory of Green Recyclable Process for Iron & Steel Production, Shougang Group, Beijing 100043, China;
全文: PDF(5484 KB)   HTML
  
摘要: 

采用OM、TEM和EDS分析技术,研究了1000 MPa级Nb-Ti微合金化超高强度钢在不同加热温度下保温不同时间时奥氏体晶粒粗化行为与微合金元素碳氮化物溶解行为。结果表明,铸坯中存在尺寸与形状明显不同的3类析出物:尺寸大于1 μm的方形TiN粒子;尺寸在500 nm以下的球形、椭球形或方形Nb、Ti复合析出物;少量方形或椭球形TiS或Ti(C, S)析出物。随着温度的升高,原始奥氏体晶粒尺寸呈现出单调增大的趋势,当加热温度超过1200 ℃时奥氏体晶粒发生快速长大,而析出物数量不断减少、尺寸逐渐增大、Ti/Nb原子比逐渐升高,EDS显示均为Ti、Nb复合析出。随着保温时间的延长,原始奥氏体平均晶粒尺寸呈抛物线规律长大,小尺寸的球形、椭球形的析出物逐渐溶解,大尺寸方形析出物数量逐渐增加且棱角变得模糊。综合考虑加热温度和保温时间对Nb、Ti微合金元素的固溶行为和奥氏体晶粒粗化行为的影响,1000 MPa级Nb-Ti微合金化超高强度钢的加热温度和保温时间分别为1250 ℃和80 min较合适。

关键词 Nb-Ti微合金化1000MPa级超高强度钢加热制度晶粒长大析出物    
Abstract

In the production process of ultra-high strength steel, heating schedule of casting slab is one of primary controlling parameters in hot rolling techniques. Heating temperature and holding time affect the prior austenite grain size and the solution of microalloyed elements directly, which both affect austenite recrystallization, precipitation and mechanical properties. A plenty of researches have been made to get better understanding and controlling the austenite grain size or precipitation behavior during austenitizing process over the past half a century, but it lacks systematic researches. Hence it is very important to confirm a reasonable heating schedule. In this work, the austenite grain coarsening behavior and microalloying carbonitrides dissolving behavior in 1000 MPa grade Nb-Ti microalloyed ultra-high strength steel during isothermal holding at different temperatures were studied by OM, TEM and EDS. The results showed that the precipitates in the slab can be obviously classified into three kinds by their size and shape. The average dimension of the bigger cubic precipitates is over 1 μm, and that of the smaller spherical, ellipsoid or cubic precipitates is below 500 nm or less. EDS results showed that the bigger cubic precipitates are TiN, and the smaller spherical, ellipsoid or cubic precipitates are mainly composed of Nb, Ti composite precipitates and a bit of TiS or Ti (C, S). With the increasing of holding temperature, increase of the original austenite grain size showed a monotonous increase trend, and the austenite grain grows rapidly when the heating temperature exceeds 1200 ℃; the amount of precipitates decreased and their size increased, the atomic ratio of Ti/Nb increased gradually, and EDS results showed all the precipitates contain Nb, Ti elements. With the increasing of holding time, the average austenite grain grew up in parabolic law, the amount of small sized spherical and ellipsoid precipitates dissolved gradually, and that of the large sized cubic precipitates increased gradually and their edges become blurred. The effects of heating temperature and holding time on austenite grain size and precipitation behavior were considered synthetically, the heating temperature at 1250 ℃ by holding 80 min will be more appropriate for the 1000 MPa grade Nb, Ti microalloyed ultra-high strength steel.

Key wordsNb-Ti microalloying    1000 MPa grade ultra-high strength steel,    heating schedule    grain growth    precipitate
收稿日期: 2016-06-15      出版日期: 2016-12-13

引用本文:

惠亚军,潘辉,李文远,刘锟,陈斌,崔阳. 1000 MPa级Nb-Ti微合金化超高强度钢加热制度研究[J]. 金属学报, 2017, 53(2): 129-139.
Yajun HUI,Hui PAN,Wenyuan LI,Kun LIU,Bin CHEN,Yang CUI. Study on Heating Schedule of 1000 MPa Grade Nb-Ti Microalloyed Ultra-High Strength Steel. Acta Metall Sin, 2017, 53(2): 129-139.

链接本文:

http://www.ams.org.cn/CN/10.11900/0412.1961.2016.00237      或      http://www.ams.org.cn/CN/Y2017/V53/I2/129

图1  加热温度对1000 MPa级Nb-Ti微合金化超高强度钢原始奥氏体晶粒尺寸和晶粒度级别的影响
图2  1000 MPa级Nb-Ti微合金化超高强度钢不同加热温度保温40 min时奥氏体晶粒形貌的OM像
图3  1000 MPa级Nb-Ti微合金化超高强度钢在1150和1250 ℃保温不同时间时奥氏体平均晶粒尺寸和晶粒度级别
图4  1000 MPa级Nb-Ti微合金化超高强度钢在1150 ℃保温不同时间时奥氏体晶粒形貌的OM像
图5  1000 MPa级Nb-Ti微合金化超高强度钢在1250 ℃保温不同时间时奥氏体晶粒形貌的OM像
图6  1000 MPa级Nb-Ti微合金化超高强度钢原始试样中析出物TEM像与EDS分析
图7  1000 MPa级Nb-Ti微合金化超高强度钢在不同加热温度下保温40 min后析出物的TEM像与EDS分析
图8  1000 MPa级Nb-Ti微合金化超高强度钢在不同加热温度下保温40 min后析出物尺寸分布图
图9  1000 MPa级Nb-Ti微合金化超高强度钢在1150 ℃保温不同时间后析出物的TEM像
[1] Zhang P C, Wu H B, Tang D, et al.Dissolving behaviors of carbonitrides in Nb-V-Ti and V-Ti microalloying steels[J]. Acta Metall. Sin., 2007, 43: 753
[1] (张鹏程, 武会宾, 唐荻等. Nb-V-Ti和V-Ti微合金钢中碳氮化物的回溶行为[J]. 金属学报, 2007, 43: 753)
[2] Giumelli A K, Militzer M, Hawbolt E B.Analysis of the austenite grain size distribution in plain carbon steels[J]. ISIJ Int., 1999, 39: 271
[3] Papworth A J, Williams D B.Segregation to prior austenite grain boundaries in low-alloy steels[J]. Scr. Mater., 2000, 42: 1107
[4] Uhm S, Moon J, Lee C, et al.Prediction model for the austenite grain size in the coarse grained heat affected zone of Fe-C-Mn steels: Considering the effect of initial grain size on isothermal growth behavior[J]. ISIJ Int., 2004, 44: 1230
[5] Speer J G, Michael J R, Hansen S S.Carbonitride precipitation in niobium/vanadium microalloyed steels[J]. Metall. Mater. Trans., 1987, 18A: 211
[6] Yong Q L, Li Y F, Sun Z B, et al.Second-phase on grain coarsening time and temperature[J]. Iron Steel, 1993, 28(9): 45
[6] (雍岐龙, 李永福, 孙珍宝等. 第二相与晶粒粗化时间及粗化温度[J]. 钢铁, 1993, 28(9): 45)
[7] Smith R M, Dunne D P.Structural aspects of alloy carbonitride precipitation in microalloyed steels[J]. Mater. Forum, 1988, 11: 166
[8] Hong S G, Kang K B, Park C G.Strain-induced precipitation of NbC in Nb and Nb-Ti microalloyed HSLA steels[J]. Scr. Mater., 2002, 46: 163
[9] Yi H L, Du L X, Wang G D, et al.New Ti-bearing high strength steel[J]. J. Mech. Eng., 2008, 44(8): 50
[10] Dutta B, Valdes E, Sellars C M.Mechanism and kinetics of strain induced precipitation of Nb(C, N) in austenite[J]. Acta Metall. Mater., 1992, 40: 653
[11] Senuma T, Suehiro M, Yada H.Mathematical models for predicting microstructural evolution and mechanical properties of hot strips[J]. ISIJ Int., 1992, 32: 423
[12] Jiao S, Penning J, Leysen F, et al.The modeling of the grain growth in a continuous reheating process of a low carbon Si-Mn bearing TRIP steel[J]. ISIJ Int., 2000, 40: 1035
[13] Reti T, Fried Z, Felde I.Computer simulation of steel quenching process using a multi-phase transformation model[J]. Comput. Mater. Sci., 2001, 22: 261
[14] Hong S C, Lim S H, Hong H S, et al.Effects of Nb on strain induced ferrite transformation in C-Mn steel[J]. Mater. Sci. Eng., 2003, A355: 241
[15] Adamczyk J, Kalinowska-Ozgowicz E, Ozgowicz W, et al.Interaction of carbonitrides V(C, N) undissolved in austenite on the structure and mechanical properties of microalloyed V-N steels[J]. J. Mater. Proc. Technol., 1995, 53: 23
[16] Hong S G, Kang K B, Park C G.Strain-induced precipitation of NbC in Nb and Nb-Ti microalloyed HSLA steels[J]. Scr. Mater., 2002, 46: 163
[17] Hong S G, Jun H J, Kang K B, et al.Evolution of precipitates in the Nb-Ti-V microalloyed HSLA steels during reheating[J]. Scr. Mater., 2003, 48: 1201
[18] Maropoulos S, Karagiannis S, Ridley N.The effect of austenitising temperature on prior austenite grain size in a low-alloy steel[J]. Mater. Sci. Eng., 2008, A483: 735
[19] Wang Y.Microstructure evolution and precipitation behaviors of second phase of X80 pipeline steels by hot charged processing [D].[D] Beijing: University of Science and Technology Beijing, 2010
[19] (王岩. 热送热装X80管线钢组织演变及第二相析出规律研究[D]. 北京: 北京科技大学, 2010)
[20] Poths R M, Higginson R L, Palmiere E J.Complex precipitation behavior in a microalloyed plate steel[J]. Scr. Mater., 2001, 44: 147
[21] Craver A J, He K, Garvie L A J, et al. Complex heterogeneous precipitation in titanium-niobium microalloyed Al-killed HSLA steels——I. (Ti, Nb)(C, N) particles[J]. Acta Mater., 2000, 48: 3857
[22] Yong Q L, Ma M T, Wu B R.Microalloyed Steels——Physical and Mechanical Metallurgy [M]. Beijing: Mechanical Industry Press, 1989: 254
[22] (雍岐龙, 马鸣图, 吴宝熔. 微合金钢——物理和力学冶金 [M]. 北京: 机械工业出版社, 1989: 254)
[23] Yoshie A, Fujioka M, Watanabe Y, et al.Modelling of microstructural evolution and mechanical properties of steel plates produced by thermo-mechanical control process[J]. ISIJ Int., 1992, 32: 395
[24] Zhong Y L, Liu G Q, Liu S X, et al.Austenite grain growth behavior of steel 33Mn2V designed for oil-well tubes[J]. Acta Metall. Sin., 2003, 39: 699
[24] (钟云龙, 刘国权, 刘胜新等. 新型油井管钢33Mn2V的奥氏体晶粒长大规律[J]. 金属学报, 2003, 39: 699)
[25] Gladman T.On the theory of the effect of precipitate particles on grain growth in metals[J]. Proc. Roy. Soc., 1966, 266A: 298
[26] Hillert M, Waldenstr?m M.A thermodynamic analysis of the Fe-Mn-C system[J]. Metall. Trans., 1977, 8: 5
[27] Saito Y, Shiga C.Computer simulation of microstructural evolution in thermomechanical processing of steel plates[J]. ISIJ Int., 1992, 32: 414
[28] Yang X L.Effects of heating temperature on solid solution of second phase particles and grain growth in pipeline steel[J]. Iron Steel Vanad. Titan., 2002, 23(2): 11
[28] (杨秀亮. 加热温度对管线钢第二相粒子固溶及晶粒长大的影响[J]. 钢铁钒钛, 2002, 23(2): 11)
[29] Xue R D, Zhao Z Y, Wang M X, et al.Effect of soaking time on the law of solid solution of Ti and Nb microalloyed high strength steel[J]. J Univ. Sci. Technol. Beijing, 2007, 29: 907
[29] (薛润东, 赵志毅, 王明侠等. 均热时间对含Ti、Nb 微合金元素高强钢固溶规律的影响[J]. 北京科技大学学报, 2007, 29: 907)
[1] 刘峰, 黄林科, 陈豫增. 纳米晶金属材料中相变与晶粒长大的共生现象[J]. 金属学报, 2018, 54(11): 1525-1536.
[2] 惠亚军, 潘辉, 刘锟, 李文远, 于洋, 陈斌, 崔阳. 600 MPa级Nb-Ti微合金化高成形性元宝梁用钢的强化机制[J]. 金属学报, 2017, 53(8): 937-946.
[3] 徐洋, 孙明雪, 周砚磊, 刘振宇. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51(1): 31-39.
[4] 骆宗安, 刘纪源, 冯莹莹, 彭文. 超快速连续退火对低Si系Nb-Ti微合金化TRIP钢组织和力学性能的影响*[J]. 金属学报, 2014, 50(5): 515-523.
[5] 吴斯, 李秀程, 张娟, 尚成嘉. Nb对中碳钢相变和组织细化的影响*[J]. 金属学报, 2014, 50(4): 400-408.
[6] 周德强, 刘雄军, 吴渊, 王辉, 吕昭平. 新型奥氏体耐热不锈钢再结晶行为及其对力学性能的影响[J]. 金属学报, 2014, 50(10): 1217-1223.
[7] 张杰,蔡庆伍,武会宾,樊艳秋. 快速加热回火对690 MPa级海洋工程用钢组织和性能的影响[J]. 金属学报, 2013, 49(12): 1549-1557.
[8] 周广钊 王永欣 陈铮. 相场法模拟不同形状的硬质颗粒对两相晶粒长大的影响[J]. 金属学报, 2012, 48(2): 227-234.
[9] 张转转 武传松 高进强 . TCS不锈钢复合热源焊接热影响区晶粒长大的预测[J]. 金属学报, 2012, 48(2): 199-204.
[10] 付立铭 单爱党 王巍. 低碳Nb微合金钢中Nb溶质拖曳和析出相NbC钉扎对再结晶晶粒长大的影响[J]. 金属学报, 2010, 46(7): 832-837.
[11] 韩利战 陈睿恺 顾剑锋 潘健生. X12CrMoWVNbN10-1-1铁素体耐热钢奥氏体晶粒长大行为的研究[J]. 金属学报, 2009, 45(12): 1446-1450.
[12] 岳景朝 王浩 刘国权 栾军华. 一个基于平均N面体模型的晶粒长大速率方程[J]. 金属学报, 2009, 45(12): 1421-1424.
[13] 陈礼清 隋凤利 刘相华. Inconel 718合金方坯粗轧加热过程晶粒长大模型[J]. 金属学报, 2009, 45(10): 1242-1248.
[14] 高英俊 张海林 金星 黄创高 罗志荣. 相场方法研究硬质颗粒钉扎的两相晶粒长大过程[J]. 金属学报, 2009, 45(10): 1190-1198.
[15] 王浩; 刘国权 . 基于MacPherson-Srolovitz 拓扑依赖速率方程的三维晶粒尺寸分布研究[J]. 金属学报, 2008, 44(7): 769-774 .