金属学报, 2025, 61(7): 961-978 DOI: 10.11900/0412.1961.2024.00309

综述

偏滤器用钨基材料的热负荷损伤行为研究进展

罗来马1,2,3, 陈宇1, 姚刚4, 朱晓勇,1,2,3, 朱大焕5, 吴玉程1,2,3

1 合肥工业大学 材料科学与工程学院 合肥 230009

2 合肥工业大学 高性能铜合金材料及成形加工教育部工程研究中心 合肥 230009

3 合肥工业大学 有色金属与加工技术国家地方联合工程研究中心 合肥 230009

4 内蒙古科技大学 材料科学与工程学院 包头 014010

5 中国科学院合肥物质科学研究院 等离子体物理研究所 合肥 230031

Research Progress on Heat Load Damage Behavior of Tungsten-Based Materials for Divertor

LUO Laima1,2,3, CHEN Yu1, YAO Gang4, ZHU Xiaoyong,1,2,3, ZHU Dahuan5, WU Yucheng1,2,3

1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China

2 Engineering Research Center of High-Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei 230009, China

3 National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei University of Technology, Hefei 230009, China

4 School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

5 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

通讯作者: 朱晓勇,zhuxiaoyong@hfut.edu.cn,主要从事钨基复合材料制备、加工及热负荷研究

责任编辑: 梁烨

收稿日期: 2024-09-03   修回日期: 2025-01-12  

基金资助: 国家重点研发计划项目(2019YFE03120002)
国家重点研发计划项目(2022YFE03140001)
国家重点研发计划项目(2022YFE03030003)
中央高校基本科研业务费专项资金项目(JZ2023HGQB0164)
国家资助博士后研究人员计划项目(GZC20230656)
安徽省自然科学基金项目(2108085J21)
安徽省自然科学基金项目(2308085QE154)
安徽省重点研发计划项目(202104A05020045)

Corresponding authors: ZHU Xiaoyong, professor, Tel:(0551)62902604, E-mail:zhuxiaoyong@hfut.edu.cn

Received: 2024-09-03   Revised: 2025-01-12  

Fund supported: National Key Research and Development Program of China(2019YFE03120002)
National Key Research and Development Program of China(2022YFE03140001)
National Key Research and Development Program of China(2022YFE03030003)
Fundamental Research Funds for the Central Universities(JZ2023HGQB0164)
Postdoctoral Fellowship Program of CPSF(GZC20230656)
Natural Science Foundation of Anhui Province(2108085J21)
Natural Science Foundation of Anhui Province(2308085QE154)
Key Research and Development Program of Anhui Province(202104A05020045)

作者简介 About authors

罗来马,男,1980年生,教授,博士

摘要

有限的能源无法满足人类社会长期发展的需求,核聚变能源被视为保护环境和满足未来能源需求的重要解决方案之一。然而,为确保聚变堆的正常运行,解决托卡马克(Tokamak)装置中面向等离子体的偏滤器热负荷损伤问题至关重要。W因具有高熔点、低物理溅射率、低氘滞留以及优异的力学性能等优点而成为核聚变堆中偏滤器部位首选的面向等离子体材料(PFMs)。在聚变堆运行期间,钨基PFMs会受到持续的热负荷损伤,通常偏滤器部位需承受5~20 MW/m2高热峰值的稳态热负荷和功率密度高达约2 GW/m2的瞬态热负荷。因此,W在热负荷作用下的损伤行为及抑制损伤策略已成为当前研究的热点问题。本文根据国内外现有研究成果,阐述了纯W、合金化钨、弥散强化钨在热负荷作用下的损伤行为。针对钨基材料的热负荷损伤演变情况及抑制损伤策略进行总结与展望,进而为后续研究工作提供参考。

关键词: 偏滤器; 钨基材料; 热负荷; 损伤行为; 抑制损伤策略

Abstract

Limited energy resources cannot meet the long-term developmental needs of human society. As such, nuclear fusion energy is considered a key solution for environmental protection and meeting future energy demands. However, to ensure the reliable operation of fusion reactors, addressing heat load damage to the divertor facing plasma in tokamak devices is crucial. The divertor, an indispensable core component of fusion devices, plays essential roles in these devices, including the removal of heat load generated via scraping layers and radiation and protection of the main vacuum chamber, auxiliary heating systems, and diagnostic systems, thereby ensuring the safe and stable operation of nuclear fusion reactors. Nevertheless, due to harsh operational conditions, the divertor is prone to damage, limiting the stable operation of long-pulse, high-parameter plasmas. W is critical in the divertor of fusion reactors, primarily owing to its high melting point, low physical sputtering rate, low deuterium retention, and excellent mechanical properties, allowing it to perform stably under extreme conditions. However, tungsten materials have several limitations, including a high ductile-brittle transition temperature, a low recrystallization temperature, and susceptibility to activation. Therefore, it is necessary to regulate, modify, and optimize these materials to enhance the performance of plasma-facing materials (PFMs). Such improvements aim to increase their resilience under extreme environments, minimize damage risks under high heat loads, and enhance heat load resistance, thereby ensuring the long-term stable operation of the divertor in fusion reactors and to meet future energy challenges. The working conditions of fusion reactors are extremely harsh, with the divertor region experiencing continuous heat load damage. It typically faces steady-state heat loads with peak values as high as 5-20 MW/m2 and transient heat loads of up to ~2 GW/m2. These heat loads can cause melting and cracking on both sides of the divertor cassette, posing a risk of reactor failure. Consequently, the study of the heat load damage behavior in tungsten-based PFMs as well as development of damage mitigation strategies have become hot topics in fusion research. This paper reviews current research efforts, both domestic and international, related to the damage behavior of pure tungsten, tungsten alloys, and dispersed phase-strengthened tungsten under heat load conditions. Additionally, it summarizes and forecasts the evolution of heat load damage in tungsten-based materials and presents strategies for damage mitigation, thereby providing a reference for future research endeavors.

Keywords: divertor; tungsten-based material; heat load; damage behavior; strategies to inhibit the damage

PDF (4651KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

罗来马, 陈宇, 姚刚, 朱晓勇, 朱大焕, 吴玉程. 偏滤器用钨基材料的热负荷损伤行为研究进展[J]. 金属学报, 2025, 61(7): 961-978 DOI:10.11900/0412.1961.2024.00309

LUO Laima, CHEN Yu, YAO Gang, ZHU Xiaoyong, ZHU Dahuan, WU Yucheng. Research Progress on Heat Load Damage Behavior of Tungsten-Based Materials for Divertor[J]. Acta Metallurgica Sinica, 2025, 61(7): 961-978 DOI:10.11900/0412.1961.2024.00309

国际能源署(IEA)在2024年发布的《世界主要能源统计(KWES)》中统计了从2010年到2023年的能源供应和消耗量[1],化石燃料仍是主要的能源消耗,其有限的存量使得能源枯竭危机不可避免。安全、清洁、可持续的核聚变能源是未来解决人类能源危机的最有效方式之一。如图1a[2]所示,具有偏滤器位形的托卡马克(Tokamak)装置已经被国际认证为目前研究可控核聚变最具潜力的实验装置。偏滤器模型如图1b[3]所示。W因其熔点高(3410 ℃)[4]、溅射率低[5]和热工性能好(如抗蠕变[6]、抗热负荷[7]和抗辐射损伤[8])以及优异的力学性能等优点,成为国际热核聚变实验堆(ITER)[9]以及下一代聚变装置——中国聚变工程实验堆(CFETR)[10]和欧盟示范热核聚变电站(DEMO)[11,12]偏滤器的主要候选材料。

图1

图1   磁约束核聚变托卡马克(Tokamak)偏滤器结构设计示意图[2,3]及其热负荷加载场景[13,26]

Fig.1   Schematics of magnetic confinement nuclear fusion Tokamak international thermonuclear experimental reactor (ITER)[2] (a) and divertor structure design[3] (b); and synergistic multi-field coupling loading scenarios of plasma-facing materials (PFMs) in future thermonuclear fusion reactors[13] (DEMO—demonstration plant, ELM—edge localized mode, VED—vertical displacement) (c) and sketch maps showing the general mechanism of crack formation in heat load tests[26] (d1, d2)


图1c[13]所示,聚变装置中面向等离子体材料(PFMs)需承受极端的稳态和瞬态热负荷,并受到高功率密度H-He等离子体、中子辐照等其他协同耦合作用的影响,进而影响钨基材料的结构和性能。偏滤器作为核聚变装置的重要组件,主要用于去除刮削层和辐射中的热流。热量波动产生的热应力会增加材料表面损伤的概率[14~16]。因此,偏滤器用钨基材料的选择须经过严苛评估。在正常运行条件下,偏滤器表面承受的稳态热通量约为10 MW/m2。但在等离子体循环的开始及结束阶段,偏滤器表面将承受短时的约20 MW/m2高热负荷。此外,实际运行过程中也会出现一些特殊事件。例如,ITER在服役期间会出现等离子体破裂(plasma disruptions)事件,导致偏滤器表面受到功率密度高达30 MW/m2的热负荷;垂直位移事件(VDEs)会导致W表面承受高达60 MW/m2的瞬态热负荷;边界局域模(ELMs)使得偏滤器表面承受的最大热负荷为1 GW/m2甚至10 GW/m2,进而导致材料表面发生塑性变形、再结晶、开裂、熔化等损伤现象[17~20]。在2017~2020年EAST W-Cu上偏滤器服役期间,共有61个W-Cu单元出现熔化现象,68个W-Cu单元产生裂纹。这些现象不仅破坏偏滤器的结构完整性,也对等离子体的稳定性构成威胁。当偏滤器熔化后,喷出的金属液滴可能导致等离子体破裂,进而影响核聚变堆的正常运行[21~23]。为满足核聚变堆中偏滤器部位极端的服役环境,相应的PFMs需要承受住一定次数的稳态和瞬态热负荷而不发生开裂或熔化等损伤[24]。热负荷引起的热应力可能导致高周疲劳从而引起裂纹萌生与扩展[25]。如图1d1d2[26]所示,热负荷可分为2个阶段。在加载阶段,样品表面作用区域温度迅速上升,短时间内无法有效进行热传导,形成高温度梯度,进而产生极大压应力,导致钨材料表面发生塑性或弹性变形。在冷却阶段,温度急剧降低将产生超过材料抗拉强度的拉应力,导致钨基材料表面形貌发生变化。因此,钨基材料的抗热负荷损伤性能与力学性能密切相关,高强度可以抵抗热负荷产生的热应力,而良好的韧性有利于通过塑性变形释放应力,从而避免裂纹产生。

针对严苛服役环境,国内外研究人员对偏滤器用钨基材料抗热负荷的研究从未停止,解决其存在的问题迫在眉睫。本文基于国内外现有研究成果,阐述了纯W、合金化钨、弥散强化钨在热负荷作用下的损伤行为,并总结与展望钨基材料的热负荷损伤演变情况及其抑制损伤策略,从而为后续研究工作提供相关参考。

1W的热负荷损伤行为

W被认为是未来热核聚变装置中最有前景的PFMs候选材料之一。目前,实验室对偏滤器用PFMs钨材料热负荷性能的评估方式主要包括在激光加热、电加热、电子流轰击以及毛细管放电等离子体发生器(TEC)等设备上模拟类似ELMs瞬态热负荷损伤实验。本节将重点讨论不同评估手段和制备方法对纯W材料热负荷损伤行为的影响,并提出相应的抑制损伤策略。

Minissale等[27]采用激光加热模拟ELMs事件,研究瞬态热负荷(1~15 ms,< 3 GW/m2)对商业W (纯度为99.95%,质量分数,下同)晶粒生长和损伤阈值的影响。激光分布为准平顶分布,直径为900 μm。在固定脉冲数的情况下,脉冲频率从20 Hz到100 Hz,晶粒尺寸增加30%~40%,在20次脉冲后基本完成再结晶。对W表面施加3 GW/m2的热负荷,发现单脉冲持续时间超过4.5 ms时会使材料表面发生熔化。如图2a[27]所示,W发生熔化,熔池表面出现典型的熔化所导致的晶粒结构。如图2b1b2[27]所示,在熔融区中心W晶粒尺寸高达60 μm。通过单脉冲热负荷(功率密度为1.2 GW/m2)估计,开裂阈值为(70 ± 10) MW/(m2·s0.5),裂纹宽度约为0.25 μm。如图2cd[27]所示,增加脉冲持续时间可以观察到表面裂纹在亚毫米范围内扩展,这些裂纹在聚变反应过程中可能会导致燃料滞留,从而影响核聚变堆运行的可靠性和安全性。

图2

图2   加载3 GW/m2热负荷后W样品表面的SEM像[27]

Fig.2   Surface SEM images of cracked and melted zones in W after 3 GW/m2 heat loads[27]

(a) 104 pulse of 1 ms at 20 Hz (b1, b2) high magnified SEM images of Fig.2a (c, d) 1 pulse of 13 ms (c) and 14 ms (d), respectively


Seo等[28,29]和Gebhart等[30,31]研究表明,TEC可以产生较高的功率密度(GW/m2量级)和温度,从而实现高效的离子加速,因此TEC具备模拟PFMs材料在极端ELMs瞬态热负荷下的能力[32,33]。Jiang等[34]和李伟昊[35]基于TEC平台建立了可重复频率运行的毛细管放电结构,实现等离子体射流重频运行,毛细管放电在1~10 Hz范围内可调,满足瞬态热负荷10 Hz重复频率的需求。然后,通过TEC对99.5%纯度的商业W进行瞬态热负荷实验,研究不同热通量、脉冲数和频率对纯W损伤的影响。图3a[34]为主裂纹和二次裂纹的典型分布。熔化区周围的主裂纹呈网状分布;二次裂纹主要沿裂纹尖端和边界扩展。如图3b~d[34]所示,在0.5 GW/m2功率密度的热负荷下,一次脉冲后材料表面无明显损伤,但高频脉冲数的增加会导致材料阈值降低,从而在表面产生开裂损伤。随着功率密度和脉冲数增加,裂纹扩展和熔化损伤加剧,在0.5、0.85和1.25 GW/m²功率密度下主裂纹宽度分别为6.9、8.5和11.3 μm。熔化层中存在许多垂直于表面的小裂纹,在进一步的应力作用下,可能发展为主裂纹,沿再结晶晶粒边界扩展,二次裂纹则部分穿过晶粒,最初集中在主裂纹的边缘或表面,然后向内扩展最终终止。李伟昊等[35]的研究证实了上述实验结果,当热负荷较低时,温度未达到材料的韧脆转变温度(DBTT),材料通过热传导耗散热量,未出现明显变形。随着热负荷增大,材料表面温度上升至材料的DBTT,导致材料局部进入屈服阶段,并发生塑性变形。卸载热负荷后,弹性变形部分随着温度的恢复而消失,但材料表面仍存在塑性变形。随着热负荷增加,材料在降温过程中产生的应力将超过材料的断裂阈值,导致材料表面出现开裂现象。当温度超过材料熔点时,材料表面会出现熔化、起泡、飞溅和外延生长,最终导致部件完全失效。

图3

图3   主裂纹和二次裂纹典型分布以及不同加载条件下纯W表面开裂情况的SEM像[34]

Fig.3   SEM images showing typical distribution of primary and secondary cracks (a) and cracking on the pure W surface under different heat loads with 1 pulse (b-d)[34]

(b) 0.5 GW/m2 (c) 0.85 GW/m2 (d) 1.25 GW/m2


偏滤器模块的热负荷损伤实验是纯W测试过程中的重要环节,旨在检查部件在使用寿命期间是否保持其热特性。Lian等[36]采用真空钎焊方式制备W/CuCrZr模块,并进行稳态热负荷测试。实验结果表明,W/CuCrZr模块可承受9 MW/m2功率密度下循环1000 cyc的稳态热负荷测试,表面温度偏差在5%以内。Fukuda等[37]使用电子辐照设备(JEBIS)对来自联合材料株式会社(ALMT)和日本电产株式会社(NSCM)的2种小型纯W偏滤器模型(SSMUs)进行高热流测试(HHFT) (样品分别命名为ALMT-W和NSCM-W),在约20 MW/m2的功率密度下持续10 s,热负荷循环次数为1000 cyc。图4aa1、b~b2[37]分别为ALMT-W和NSCM-W样品经热负荷后的表面形貌。对比2种纯W偏滤器模型,可以发现ALMT-W样品表面呈颗粒状中心凸起,NSCM-W样品表面出现鳞片和褶皱的变形现象。Pintsuk等[38]研究了温轧纯W板制作的W-Cu偏滤器组件(每串含有7块),首先在EMS-60电子束热负荷测试装置上以10 MW/m2的功率密度在700 cyc循环中进行预加载,然后在JUDITH Ⅰ电子束设备中对4~6号块加载500 cyc循环、10 MW/m2的高热负荷,最后在4号和5号块加载500次、20 MW/m2的热负荷。结果表明,20 MW/m2高热流循环后,电子束诱导的材料表面改性使得2个区块之间辐射率显著减小,由于束斑中高功率密度造成的局部热负荷和束扫描造成的热疲劳损伤,材料表面产生塑性变形和浅裂纹,并随之出现W晶粒的侵蚀。5号块在中心平行于冷却管4~5 mm深的位置出现宏观裂纹。通过上述测试可知,W-Cu偏滤器组件满足全W偏滤器Tokamak核聚变实验装置(WEST)极端热负荷的应用要求。未来应针对上述内容进行深入研究,以探究稳态热负荷对偏滤器用W材料损伤行为的影响。

图4

图4   小型纯W偏滤器模型(SSMU)在高热流测试后的表面形貌[37]

Fig.4   Low (a, b) and high (a1, b1, b2) magnified surface morphologies of W monoblock in small-scale W monoblock divertor mock-up (SSMU) after high heat loading test (HHFT)[37] (ALMT—allied material, NSCM—nidec sankyo cmi; red arrows represent macro-crack; green, red, and blue rectangles are the high magnified images of the heat-loaded surface)

(a, a1) ALMT-W (b, b1, b2) NSCM-W


金属增材制造技术能够在短时间内制造出复杂的零件且成本较低。但其表面易产生裂纹,且晶粒尺寸过大不利于后续的热负荷测试。Dorow-Gerspach等[39]采用选区电子束熔化(SEBM)技术制造出致密度为99%的大块W样品(SEBM-W),并根据ITER规范制备出常规生产的参考样品,随后进行再结晶处理。同时使用JUDITH Ⅱ电子束设备[40],在高频、高脉冲数的瞬态热负载下进行实验。以再结晶的常规样品作为参考,模拟类似ITER的瞬态热负荷(脉冲105次、脉冲持续时间0.48 ms、频率25 Hz、功率密度0.14 GW/m2)。如图5ab[39]所示,再结晶W表面出现多个均匀裂纹。如图5cd[39]所示,SEBM-W样品在初始阶段存在少量裂纹簇(crack clusters),在高热负荷作用后,这些裂纹团簇略微变宽,同时从裂纹的尖端开始发展出新裂纹。只有极少数裂纹会在全新的位置形成。与再结晶W相似,SEBM-W样品表面也发生塑性变形[41]。尽管制备过程中产生的裂纹在热负荷作用下不一定会导致裂纹密度增加,但却会显著降低材料的热导率,进而对抗热负荷性能造成不利影响。因此,仍需进一步优化参数直至完全消除裂纹。近年来,国内外学者对纯W的选区激光熔化(SLM)技术、激光熔化沉积(LMD)技术和黏接剂喷射打印(BJP)技术进行了广泛研究[42~46]。上述增材制造技术的研究为核聚变堆PFMs材料的开发提供了参考。

图5

图5   高功率热负荷测试前后再结晶W和电子束选区熔化(SEBM) W的SEM像[39]

Fig.5   Surface SEM images showing recrystallized W (W-Recry.) (a, b) and W prepared by selective electron beam melting (SEBM) with the best parameter set (c, d) before (a, c) and after (b, d) high heat loading test[39]


超细晶W可以显著改善钨材料的力学性能和抗辐照性能。超细晶粒能够增大晶界面积,降低晶界处的平均杂质浓度,从而降低钨材料的DBTT。此外,超细晶粒还能在晶粒内部产生、固定和积累位错,从而提高塑性[47]。制备塑性变形超细晶材料的主要工艺为高压扭转(HPT)法,研究人员[48~50]使用此方法将纯W的晶粒细化至0.1~0.2和0.7 μm,显著提高位错密度和材料的硬度。然而,如表1[51,52]所示,Zhou等[51]和Zhang等[52]对超细晶W进行高热负荷实验,发现在JUDITH Ⅰ电子束设备加载下,超细晶粒的抗热负荷性能弱于10 μm晶粒,这可能与气体和杂质残留以及较低的致密度有关。综上所述,超细晶W在抗热负荷性能上略显不足。因此,在制备超细晶W前,应对W粉进行高温烧结、气相沉积等处理,以获得高纯度W粉。随后对超细晶W进行大塑性变形处理,以提高其抗热负荷性能。

表1   超细晶W的抗热负荷能力统计[51,52]

Table 1  Statistical analyses of the heat load resistance of pure ultra-fine grained W[51,52]

Alloy

Grain size

μm

Cracked threshold

GW/m2

Ref.
W020.2< 0.22[51]
W030.3< 0.22[52]
W101< 0.22[51]
W303< 0.22[52]
W100100.44-0.55[51]

新窗口打开| 下载CSV


综上所述,对于偏滤器用PFMs而言,极高的热负荷带来了极为严峻的考验。目前,纯W已在偏滤器靶材部件中得到应用,其主要通过优化机械结构缓解热负荷。然而,优化机械结构难以改变材料的基本物化性质,且未来可控核聚变堆的设计需考虑成本问题,因此为延长服役寿命并降低更换频次,亟需开发性能更为优异的钨合金材料,以满足核聚变堆的运行需求。

2 合金化钨的热负荷行为

纯W存在诸如DBTT高(超过500 ℃)、热稳定性差、再结晶温度低(约为1200 ℃)以及中子辐照引起的硬化、脆化和易活化等问题,这些缺点导致实际应用中需频繁更换偏滤器。为寻找更适合的核聚变应用钨基材料,通常在W基体中添加Ta、V、Re、K、Y、Zr、Mo、Nb等合金化元素。这些元素能够增强材料的强度,阻碍位错迁移,降低晶界处的杂质含量,从而提高晶界的滑移阻力。此外,这些合金化策略能够改善钨基材料的力学性能、抗再结晶性能以及抗溅射性能等。

W-Ta合金的研发旨在解决低温脆性、再结晶脆性和中子辐照脆性等问题。Ta和W形成均匀互溶的bcc结构单相固溶体,随着Ta含量增加,W晶粒的尺寸也随之增大[53]。当Ta含量大于15%时,Ta颗粒发生聚集,导致合金力学性能下降[54]。Linke等[55]发现,含5%Ta的钨基材料的抗热负荷性能明显改善。Li等[56]研究表明,W-1%Ta合金的DBTT约为600 ℃,且断裂韧性和断口附近的裂纹扩展程度随温度增加而增加,表明其断裂过程是受温度主导,主要由位错驱动。Gonderman等[57]使用Nd:YAG激光系统对纯W、W-1%Ta和W-5%Ta合金进行瞬态热负荷模拟,并进行高温单(He+)和双(He+和D+)辐照实验以深入了解协同作用下瞬态热负荷对材料表面微观结构影响。在激光照射后,W-5%Ta合金表面出现裂纹和熔化现象。这归因于其硬度和极限抗拉强度与纯W相比存在显著差异,这些力学性能差异可能使W-Ta合金在强热负荷下抵抗裂纹形成和传播临界应力的能力减弱,进而引发开裂和熔化现象。Nogami等[58]对纯W和W-3%Ta合金在D等离子体辐照(脉冲持续时间0.5~1.0 ms)下进行热负荷实验。如图6ab[58]所示,纯W和W-3%Ta合金在103次脉冲后,其表面未出现明显的粗糙现象。如图6cd[58]所示,在0.38 GW/m2功率密度、105次脉冲、4.1 × 1025 m2等离子通量条件下,材料表面形貌发生变化并出现明显裂纹。与纯W相比,W-3%Ta合金的表面降解及降解区域均被抑制,Vickers硬度提高约10%,再结晶提高约400 ℃,这可能归因于溶质Ta的固溶强化阻碍了晶界和位错运动。从实际PFMs热负荷环境的热力学响应以及基本力学性能和抗再结晶性能的角度来看,W-3%Ta合金在抗热负荷性能方面具有一定优势,其成分设计思路可为后续材料设计提供参考。

图6

图6   经过氘(D)等离子体暴露热负荷实验后的W和W-3%Ta合金的SEM像[58]

Fig.6   Low and high (insets) magnifed SEM images of surface of pure W (a, c) and W-3%Ta alloy (b, d) after thermal shock tests with background steady state D-plasma exposure under 700 oC base temperature and 0.38 GW/m2 laser power density[58] (RD—rolling direction, TD—transverse direction)

(a, b) 103 pulse (c, d) 105 pulse


V与W可完全固溶。相较于纯W,W-V合金在力学性能和热稳定性方面表现出显著提升。研究[59,60]表明,添加V可有效提高钨基材料的抗热负荷性能。Arshad等[61]研究了W-V合金的抗热负荷性能,分别采用1%、5%和10%含量的V,通过球磨和烧结制成W-1V、W-5V和W-10V 3种合金。在EMS-60设备上,采用5 ms的单次脉冲进行热负荷测试。如图7[61]所示,功率密度从0.155 GW/m2增加到0.311 GW/m2后,W-1V合金的平均裂纹宽度从0.6 μm增加到2.7 μm,裂纹密度由127 cracks/mm2降至110 cracks/mm2。当功率密度为0.159 GW/m2时,未在W-5V合金中观察到裂纹;但当功率密度增加到0.317 GW/m2时,其平均裂纹宽度由1.3 μm增加到2.9 μm,裂纹密度由18 cracks/mm2降至8 cracks/mm2。当功率密度从0.216 GW/m2增加到0.324 GW/m2时,W-10V合金中平均裂纹宽度由1 μm增加到2.5 μm,裂纹密度由59 cracks/mm2降至23 cracks/mm2。由此可见,W-5V合金的裂纹密度相对较小。在相似热负荷条件下,W-10 V合金的表面温度明显高于W-5V合金,这可能由于V含量的增加导致钨基材料的热导率降低。因此,与其他V含量合金相比,V含量为5%的钨合金在瞬态热负荷条件下的热负荷性能更为优异。

图7

图7   不同高功率密度加载下W-V合金的SEM像[61]

Fig.7   Low and high (insets) magnified SEM images of the loaded surfaces under different high heat flux (HHF) densities[61]

(a-c) W-1V alloy (d-f) W-5V alloy (g-i) W-10V alloy


Cui等[62]基于前人研究,发现W-5V-5Ta三元合金(各组成粉末纯度为99.9%)具有优异的力学性能和抗氦离子辐照性能,这归因于该类三元合金的晶粒尺寸与纯W相比显著减小,显微硬度、抗压强度和抗拉强度提升。这类合金的强化主要来源于致密化、细晶强化和固溶强化3种机制。由于W熔点较高,制备钨合金时难以实现各成分的均匀分布。因此,可使用机械合金化技术并结合放电等离子烧结(SPS)方法制备三元钨合金,以实现钨合金显微组织的均匀化和细化。

加入Re可以改善钨合金的力学性能、抗再结晶性能和抗中子辐照性能,是实现钨基材料固溶合金化的有效途径之一。与纯W相比,W-Re合金具有更好的延展性和可加工性。这主要归因于位错迁移率提高、晶粒细化及Re提升合金的再结晶温度。Re元素可在W基体中引发高温固溶强化和低温固溶软化。研究[63]表明,W基体的导热系数随着Re含量的增加而降低,这限制了W-Re合金的实际应用。当Re含量超过27%时,合金中将会析出脆性σ相(W2Re3),进而导致合金性能变差。常见的固溶体W-Re合金体系包括:W-(0.1~0.5)%Re、W-(1~2)%Re、W-(3~5)%Re、W-(7~10)%Re、W-(25~26)%Re。Du等[64]和Watanabe等[65]研究表明,W-3%Re合金中Re能够有效阻碍晶界迁移,使得该合金再结晶温度相较纯W提高约100 ℃,同时平均晶粒尺寸更小;在1000 ℃时W-3%Re合金的强度比纯W提高5%~30%。Fukuda等[66]总结了添加Re对钨基材料抗热负荷性能的影响,指出Re含量约为5%时,其固溶度趋近饱和,热负荷性能最优。

在W基体中添加适量K元素 (浓度范围为50 × 10-6~100 × 10-6),由于K熔点(63.38 ℃)和沸点(759.00 ℃)较低,在高温烧结过程中形成K蒸汽,这些蒸汽聚集形成微小且弥散分布的气泡,并停留在W基体中。K泡与晶格缺陷相互作用,作为位错的钉扎点,对晶界和亚晶界的运动产生一定的阻碍作用。这种“K泡强化”效应可以使合金产生独特的高温再结晶结构,有助于改善W基体的抗热负荷性能和抗辐照性能。然而,W-K合金在D保留方面是纯W的2.5倍,主要归因于本征错位和辐照缺陷的差异,需考虑K气泡对D循环的影响。Ma等[67,68]研究表明,高能离子辐照对通过热轧方法制备的W-K合金的抗热负荷性能有影响。如图8[68]所示,辐照前W-K合金在0.55 GW/m2条件下产生明显裂纹。由于辐照后W-K合金中产生空位型和位错型缺陷,开裂阈值从0.44~0.55 GW/m2 降至0.22~0.33 GW/m2,抗负荷性能显著降低,但辐照后的抗热负荷性能明显优于同加载条件下的纯W。类似地,Wang和Yan[69]对退火后的轧制态W-K合金进行稳态热负荷测试,发现经过130次HHFT (15 MW/m2)后,模块边缘出现长裂纹,但经过1000次HHFT后裂纹没有进一步扩展。这是由于W-K合金中形成的特殊燕尾拼接结构提升了W基体的热稳定性。Fu等[70]采用锻造和SPS工艺制备K含量为82 × 10-6的W-K合金,发现K泡能够抵抗位错和晶界的移动,显著影响H/He原子运动及缺陷的演变。然而,在大尺寸W-K合金制备过程中,不可避免地会出现尺寸大且分布不均匀的K泡。这些K泡对性能具有不利影响,但可通过后续大塑性变形和退火工艺加以改善。

图8

图8   纯W和W-K合金热负荷实验后的SEM像[68]

Fig.8   SEM images of pure W (a, a1, c, c1) and W-K alloy (b, b1, d, d1) after heat loading tests without (a, a1, b, b1) and with (c, c1, d, d1) irradiation[68]


为进一步提高W-K合金的关键性能,Chen等[71]研究了Y掺杂量(0.05%、0.10%、0.25%和0.50%)对W-K合金热负荷行为的影响。在5 ms脉冲时间和0.50及0.62 GW/m2功率密度下进行单次热负荷实验。如表2[71~73]所示,W-K-0.05Y和W-K-0.10Y合金的开裂阈值高于W-K-0.25Y和W-K-0.50Y合金。随着Y掺杂量增加,合金表面的塑性变形减少,强度提升。当Y掺杂量为0.1%时,W-K合金的强度和韧性达到最佳匹配,抗热负荷性能也表现最佳。掺杂Y后,W-K合金的开裂阈值远高于纯W,表现出优异的抗热负荷性能。此外,掺杂Y后的W-K-Y合金导热性能较好,适量Y元素能够改善力学性能,降低表面温度,减缓表面损伤[74]

表2   单次热负荷测试中W-K-xY合金和纯W的耐热负荷能力对比[71~73]

Table 2  Comparisons of heat load resistances between W-K-xY alloys and pure W on a single thermal shock test[71-73]

Alloy

Heat flux

power density

GW·m-2

Behavior

Ref.

W-K-0.05Y0.62Not cracking[71]
W-K-0.10Y0.62Not cracking[71]
W-K-0.25Y0.50Not cracking[71]
W-K-0.50Y0.50Cracking[71]
Deformed pure W0.33Cracking[72]
ITER-reference W> 0.30Cracking[73]

新窗口打开| 下载CSV


Shi等[75]制备了Re含量为0.1%~0.5%和K掺杂量为40 × 10-6~50 × 10-6的W-Re-K合金,发现K泡的弥散分布对钨合金的导热系数未产生显著影响,而Re的添加导致材料导热系数降低。随着Re含量的增加,其细化晶粒的效果更加明显。掺入0.5%Re时,合金展现出良好的综合性能,其平均晶粒尺寸为20.25 µm,室温导热系数为163 W/(m·K),再结晶温度达到约1588 ℃。在相同制备工艺下,溶质Re对再结晶阻力的影响程度小于溶质Ta。Xiao等[76]针对新型W-K-Mo-Ti-Y合金展开研究,发现微量Ti和Y (约0.1%)的掺杂使得该合金在聚变堆模拟瞬态热负荷条件下展现出优异性能。加载0.37 GW/m2的热通量后,未掺杂Ti和Y的W-K-Mo-Ti-Y合金发生严重的表面损伤,具体表现为出现宏观裂纹和微裂纹,而添加Ti和Y后,试样表面可以承受0.37 GW/m2的瞬态热负荷。这表明Ti和Y掺杂能够提高材料强度和断裂韧性,可以促进晶粒细化并吸收合金中的游离O原子,产生弥散强化的作用。双掺杂合金在提高抗热负荷能力的同时未能明显降低热导率,该研究成果为未来PFMs研究提供了有效的指导。

向W基体中添加熔点较低的合金化元素,可能因降低材料热导率而减弱其抗热负荷能力,同时也会导致合金的制备成本大幅增加。因此,添加合金元素并非一定会提高材料的抗热负荷性能及实现大规模应用。未来抑制热负荷损伤的策略包括:(1) 添加有益的合金化元素,以诱发W基体中的晶界偏聚效应和纳米相分离效应(如Sc、Mn等合金元素可以在W晶界偏聚,而Cr、Au等合金元素可在W基体中形成双相纳米晶结构[77~80]);(2) 探讨多组元合金化元素的协同作用及其添加比例对材料显微组织演变规律的影响;(3) 通过不同烧结工艺和适当的塑性加工方法进一步优化钨基材料的显微结构。

3 弥散强化钨的热负荷行为

为解决纯W在聚变堆偏滤器中的应用问题,通常向W中引入碳化物(TiC、TaC、ZrC、HfC等)和氧化物(Y2O3、La2O3、Lu2O3、HfO2等) 2类第二相形成弥散强化钨。这些第二相在高熔点、化学稳定性和热稳定性方面表现出显著优势,相较于纯W,引入第二相通常能够提升钨基材料的抗热负荷损伤能力。在热流密度冲击作用下,第二相能够有效稳定W晶粒,抑制其长大并强化晶界,减少O原子对晶界的脆化作用,从而实现纯化和强化晶界的效果[81,82]。国内多数研究团队研制的改性钨基材料大都使用核工业西南物理研究院设计的EMS-60设备进行瞬态热负荷损伤测试,因此结果具有相对的参考性。本节选取几种具有代表性的弥散强化钨基材料,并对其热负荷损伤行为进行评述和总结。

Wang等[83]采用不同晶粒尺寸的W粉(0.2、0.5、2.8 μm)和纳米级ZrC粉制备W-0.5%ZrC复合材料(以下简称WZC),并对不同退火态试样的轧向-横向(RD-TD)表面进行100次瞬态热负荷测试(脉冲持续时间为1 ms)。3种样品表现出不同的开裂阈值和开裂模式。具体而言,0.2WZC和0.5WZC样品的开裂阈值在0.22~0.33 GW/m2之间,而2.8WZC样品的开裂阈值低于0.22 GW/m2,这表明细晶WZC具有更好的抗冲击性能。经高温退火后,材料发生再结晶,导致其热负荷疲劳抗力减弱,开裂阈值显著降低,且裂纹数量增加。

在W基体中添加TaC可实现晶粒细化、晶界净化以及降低DBTT等效果[84]。Feng等[85]采用高能锻造(HERF)技术制备了W-1.0%TaC复合材料(功率密度分别为0.22、0.33和0.44 GW/m2),研究了塑性变形方式对W-TaC合金抗热负荷性能的影响。结果表明,当功率密度为0.22 GW/m2时,烧结和锻造样品的表面保持完好;当功率密度提升至0.33 GW/m2时,烧结样品表面出现长度约为225 μm的裂纹,而锻造样品仅出现轻微塑性变形。随着功率密度进一步加大至0.44 GW/m2时,烧结和锻造样品表面均出现裂纹,其中2个样品的裂纹长度分别约为270和100 μm。此外,W-TaC晶粒由等轴晶变为柱状晶。上述热负荷测试表明,HERF工艺能够提高钨基材料塑性,并且显著提高其开裂阈值,有效阻止裂纹向材料内部的扩展。

TiC第二相可以维持钨合金的超细晶(UFG)微观结构,同时提高其导热性和高温强度[86]。Tan等[87]采用湿化学法制备W、W-1.0%TaC和W-1.0%TiC复合材料。如图9a[87]所示,纯W中加载区域出现裂纹网格,阻碍热传导,造成塑性变形。在晶界附近出现的细小裂纹,与塑性变形和热疲劳载荷有关。如图9b[87]所示,W-1%TaC合金中加载区域未出现明显裂纹,但W晶界处存在少量小尺寸裂纹,说明TaC第二相有效阻碍热致裂纹扩展。如图9c[87]所示,W-1%TiC合金表面未出现细小裂纹,塑性变形主要发生在W晶粒处。综上所述,掺杂TaC和TiC的第二相能够有效提升钨基材料的抗热负荷性能,在相同质量分数(1%)下,W-1%TiC展现更优异的抗热负荷能力。

图9

图9   热负荷加载后各试样表面的FESEM像[87]

Fig.9   Low (a-c) and high (a1-c1) magnified surface FESEM images of pure W (a, a1), W-1.0%TaC alloy (b, b1), and W-1.0%TiC alloy (c, c1) after heat loading test[87] (Inset in Fig.9c1 is the corresponding high magnified image)


Yao等[88]采用湿化学法和轧制变形制备W-2.0%Y2O3 (体积分数)复合材料,并在不同功率密度下对其进行单次脉冲和100次脉冲(脉冲持续时间为1 ms)的瞬态热负荷损伤测试,研究了表面为RD-TD和TD-ND (ND为法向)的面。结果表明,TD-ND面比RD-TD面更能抵抗瞬态热负荷。由于RD-TD面的γ-纤维织构具有比TD-ND面α-纤维织构更大的Schmid因子,从而更易发生滑移。如图10[88]所示,TD-ND面的表面裂纹沿ND优先产生,表明ND的抗拉强度低于TD,沿TD的裂纹明显长于ND[89]。RD-TD面经100次脉冲热负荷后,出现网状裂纹,其沿RD的裂纹长度明显大于TD。在后续实验中[90],采用相同的实验材料,在1973 K下进行退火3 h处理,使其达到完全再结晶状态,并以RD-ND面作为研究表面进行电子束热负荷损伤实验。当功率密度达到0.6 GW/m2时,表面出现网状主裂纹,塑性变形相对较小。当裂纹扩展遇到Y2O3第二相与W基体界面时,会发生偏转并终止扩展,表明Y2O3的加入能够有效增强钨基材料抵抗裂纹扩展的能力。

图10

图10   不同功率密度下W-2.0%Y2O3复合材料经100次脉冲热负荷实验后的横向-法向(TD-ND)和轧向-横向(RD-TD)表面形貌[88]

Fig.10   Low (a-d) and high (a1-d1) magnified SEM images showing surface morphologies of the W-2.0%Y2O3 composite material after 100 pulses thermal shock experiment with different power densities[88] (ND—normal direction)

(a, a1, b, b1) TD-ND surfaces (c, c1, d, d1) RD-TD surfaces


Lv等[91,92]采用湿化学法制备不同Y2O3含量(0.3%、0.5%、0.7%和1.0%)的W-Y2O3纳米级复合粉体,并通过冷等静压和传统烧结工艺将其制备成复合材料,优化烧结工艺以提高组织均匀性和抑制晶粒生长。随后评估4种复合材料在0.20~0.6 GW/m2功率密度下的瞬态热负荷性能。如图11a[92]所示,当功率密度为0.6 GW/m2时,W-0.3Y2O3样品中未观察到主裂纹,而其他3种复合材料则出现裂纹网格和不规则的塑性变形,表明W-0.3Y2O3具有最佳的抗热负荷性能。如图11b[92]所示,W-1.1Y2O3样品在0.6 GW/m2的功率密度下表面出现小面积微熔区,存在裂纹网格但未见表面发生塑性变形。热负荷后,W-1.1Y2O3样品的最大纵向裂纹深度和宽度分别为105和1.15 μm (图11c[92])。Y2O3第二相均匀分散在晶界处产生弥散强化,实验结论与Yao等[88,90]的实验结果一致。

图11

图11   热负荷实验后试样表面和截面的SEM像[92,102]

Fig.11   SEM images showing surface (a, b, d-f) and cross-section (c) morphologies of the samples after heat loading tests

(a-c) W-0.3Y2O3 (a) and W-1.1Y2O3 (b, c) at 0.6 GW/m2[92] (d-f) W-0.5Y2O3-1Mo (d, e) and W-0.5Y2O3-1Ti (f) after high heat load test applying a single shot at 0.9 GW/m2[102]


La2O3掺杂钨基材料可以减小晶粒尺寸并提高致密度,从而提高其机械性能[93~95]。此外,La2O3掺杂可有效抑制氚等离子辐照后材料表面微裂纹的形成,这一效果主要归因于钨基材料脆性的降低[96]。但La2O3熔点相对较低,其掺杂会对抗热负荷性能产生不利影响。Zhang和Yan[97]采用粉末冶金方法和轧制工艺制备W-1.0%La2O3复合材料,并对其进行0.22~0.66 GW/m2的单次脉冲瞬态热负荷实验。当功率密度为0.22 GW/m2时,W-1.0%La2O3复合材料出现裂纹,表明其抗热负荷性能低于纯W。Gaudio等[98]研究了单激光脉冲对W-1.0%La2O3复合材料表面传热和形貌的影响,发现在激光中心处部分La2O3被喷射出来,凹脊周围由于快速加热和连续冷却而产生的热应力导致形成沿晶界延伸的微裂纹网络,从而表现出比纯W更差的抗热负荷性能。此外,也有科研工作者制备不同La2O3添加量并添加其他合金化元素的多组元钨基复合材料,并对其抗热负荷性能进行探讨[99,100]

近年来,科研人员通过在掺杂氧化物的钨基复合材料中加入少量合金化元素,以期在氧化物含量相当低的情况下进一步提高复合材料密度并细化晶粒,避免氧化物含量增加导致钨基复合材料导热和抗熔化性能下降,进而提升合金抗热负荷性能[101]。Zhou等[102]通过机械合金化和火花等离子烧结工艺制备W-0.5Y2O3-1Ti和W-0.5Y2O3-1Mo细晶钨基材料,并在0.30~1.2 GW/m2功率密度下进行单次瞬态热负荷实验。如图11de[102]所示,相比于W-0.5Y2O3-1Ti,W-0.5Y2O3-1Mo具有更好的抗瞬态热负荷性能,其开裂阈值高出2~3倍。此外,Yao等[103]在W基体中加入0.25%Y2O3和0.15%ZrO2,通过湿化学法、冷等静压、烧结和轧制变形制备W-Y2(Zr)O3复合材料,并对材料的RD-TD面施加100次脉冲的瞬态热负荷实验。结果表明,在同一加载条件下,Zr的引入使Y2O3第二相更细且分布更均匀,从而使W-Y2(Zr)O3复合材料表现出更好的抗瞬态热负荷性能。Hf作为一种合金元素,有助于抑制氧脆风险,HfO2能够有效协调塑性应变。Dong等[104]发现W-HfO2体系能够实现低温快速烧结,证实HfO2第二相为W原子提供快速输运途径,从而制备优异性能的高密度纳米晶合金。Liu等[105]研究表明,Hf元素的添加能够减小W-Y2O3复合材料的晶粒尺寸,提高其致密度和弥散强化效果,从而改善钨基材料的抗热负荷性能。

表3[83,85,88,90,92,97,102,103,106~112]汇总了已有文献中钨基复合材料在热负荷下的开裂阈值。通过分析可以发现,掺杂碳化物和氧化物并不总是对钨基材料的抗热负荷性能产生积极影响。由于氧化物相较于W具有较低熔点,其在热负荷下可能优先熔化并发生溅射。此外,某些第二相在断裂韧性和可靠性方面表现不佳,也会限制钨基材料在偏滤器制备中的应用。因此,下一阶段抑制热负荷损伤的策略应是添加不同种类的第二相,并改善组织结构及分布状态;优化第二相在大尺寸钨基复合材料制备过程中的分布状态,以期提高材料的抗热负荷性能。

表3   经瞬态热负荷后纯W及钨基复合材料损伤行为对比[83,85,88,90,92,97,102,103,106~112]

Table 3  Comparisons of pure W and tungsten-based materials after transient heat load tests[83,85,88,90,92,97,102,103,106-112]

MaterialApplied surfacePulse numberCracked threshold / (GW·m-2)Ref.
W-0.2%ZrC, rollingRD-TD1000.22-0.33[83]
W-0.5%ZrC, rollingRD-TD1000.22-0.33
W-1.0%TaC, HERF-1000.33-0.44[85]
W-2.0%Y2O3*, rollingRD-TD1000.22-0.33[88]
TD-ND1000.33-0.44
RD-ND100< 0.33[90]
W-0.3%Y2O3, sintering-1> 0.6[92]
W-1.0%La2O3, rollingTD-ND1< 0.22[97]
W-Y2(Ti)O3, SPS-1< 0.30[102]
W-Y2(Mo)O3, SPS-10.60-0.90
W-Y2(Zr)O3, rollingRD–TD1000.3-0.4[103]
W-1.0%La2O3 88%, rolling1> 0.22[106]
W-1.0%TaC, rollingRD–TD1000.33-0.44[107]
W-0.5%TiC, HIPing-100< 0.33[108]
W-1%Y2O3*, HERF-10.55-0.66[109]
W-K-Ti, SPS-100< 0.37[110]
CVD W-11000.28-0.33[111]
Pure W, rollingRD-TD1< 0.22[112]
TD-ND10.22-0.44
RD-TD100< 0.22

Note: * represents volume fraction, HIP—hot isostatic pressing, HERF—high energy rate forging, SPS—spark plasma sintering, CVD—chemical vapor deposition

新窗口打开| 下载CSV


4 总结及展望

钨基材料因其优异的性能而成为核聚变装置中PFMs的首选材料。为提高钨基材料的抗热负荷性能,研究人员尝试多种改性方法。本文探讨了纯W、合金化钨以及弥散强化钨在不同测试评估方法下的热负荷损伤行为,并阐述了制备方法对材料热负荷损伤行为的影响。

在高热负荷服役过程中,纯W过早发生回复和再结晶,导致材料的性能降低。因此,需要对其进行改性,以提高抗热负荷损伤能力。在W基体中添加合金化元素能够通过影响位错迁移和降低晶界处杂质含量等方式,提升材料的力学性能、抗热负荷性能。此外,掺杂碳化物和氧化物以实现弥散强化,也是改善钨基材料性能的常见方法,这一策略能够有效提高抗热负荷性能。然而,尽管合金化钨和弥散强化钨是提高抗热负荷性能的有效手段,但仍存在若干局限性。例如Re等合金化元素的高昂成本限制了其在聚变堆上的实际应用。同时,在服役条件下,添加低熔点合金化元素或掺杂第二相制备的复合材料可能面临熔化和溅射等问题,这些都会影响PFMs的实际应用性能。

未来的研究应考虑从多种强化机制出发,探索多组元合金化元素和多组元碳化物、氧化物的相互协同强化作用,以进一步提高偏滤器部位用PFMs的抗热负荷性能。例如,通过控制合金化元素及氧化物、碳化物的添加比例,可能有效提高钨基材料应对热负荷损伤的能力。此外,改善塑性加工方法(如高压扭转、挤压、轧制、锻造等)也可能有助于提高钨基材料的抗热负荷性能,因此探索其他高效的制造工艺以改善和强化钨基材料的潜力同样值得关注。总之,这些强化策略旨在提高偏滤器用钨基材料的可靠性并延长其使用寿命,对后续核聚变领域的发展具有重要意义。

参考文献

International Energy Agency.

World energy outlook 2024

[R]. Paris: International Energy Agency, 2024

[本文引用: 1]

Kleyn A W, Lopes Cardozo N J, Samm U.

Plasma-surface interaction in the context of ITER

[J]. Phys. Chem. Chem. Phys., 2006, 8: 1761

PMID      [本文引用: 3]

The decreasing availability of energy and concern about climate change necessitate the development of novel sustainable energy sources. Fusion energy is such a source. Although it will take several decades to develop it into routinely operated power sources, the ultimate potential of fusion energy is very high and badly needed. A major step forward in the development of fusion energy is the decision to construct the experimental test reactor ITER. ITER will stimulate research in many areas of science. This article serves as an introduction to some of those areas. In particular, we discuss research opportunities in the context of plasma-surface interactions. The fusion plasma, with a typical temperature of 10 keV, has to be brought into contact with a physical wall in order to remove the helium produced and drain the excess energy in the fusion plasma. The fusion plasma is far too hot to be brought into direct contact with a physical wall. It would degrade the wall and the debris from the wall would extinguish the plasma. Therefore, schemes are developed to cool down the plasma locally before it impacts on a physical surface. The resulting plasma-surface interaction in ITER is facing several challenges including surface erosion, material redeposition and tritium retention. In this article we introduce how the plasma-surface interaction relevant for ITER can be studied in small scale experiments. The various requirements for such experiments are introduced and examples of present and future experiments will be given. The emphasis in this article will be on the experimental studies of plasma-surface interactions.

Hirai T, Escourbiac F, Carpentier-Chouchana S, et al.

ITER tungsten divertor design development and qualification program

[J]. Fusion Eng. Des., 2013, 88: 1798

[本文引用: 3]

Barabash V, Akiba M, Mazul I, et al.

Selection, development and characterisation of plasma facing materials for ITER

[J]. J. Nucl. Mater., 1996, 233-237: 718

[本文引用: 1]

Guseva M I, Suvorov A L, Korshunov S N, et al.

Sputtering of beryllium, tungsten, tungsten oxide and mixed W-C layers by deuterium ions in the near-threshold energy range

[J]. J. Nucl. Mater., 1999, 266-269: 222

[本文引用: 1]

Reiser J, Rieth M, Dafferner B, et al.

Tungsten foil laminate for structural divertor applications-basics and outlook

[J]. J. Nucl. Mater., 2012, 423: 1

[本文引用: 1]

Rubel M.

Structure materials in fusion reactors: Issues related to tritium, radioactivity and radiation-induced effects

[J]. Fusion Sci. Technol., 2010, 57: 474

[本文引用: 1]

Dicarlo J A, Stanley J T.

Energy dependence of electron-induced radiation damage in tungsten

[J]. Radiat. Eff., 1971, 10: 259

[本文引用: 1]

Pitts R A, Bonnin X, Escourbiac F, et al.

Physics basis for the first ITER tungsten divertor

[J]. Nucl. Mater. Energy, 2019, 20: 100696

[本文引用: 1]

Wan Y X, Li J G, Liu Y, et al.

Overview of the present progress and activities on the CFETR

[J]. Nucl. Fusion, 2017, 57: 102009

[本文引用: 1]

Barrett T R, Ellwood G, Pérez G, et al.

Progress in the engineering design and assessment of the European DEMO first wall and divertor plasma facing components

[J]. Fusion Eng. Des., 2016: 109-111: 917

[本文引用: 1]

Coenen J W, Antusch S, Aumann M, et al.

Materials for DEMO and reactor applications—Boundary conditions and new concepts

[J]. Phys. Scr., 2016, T167: 014002

[本文引用: 1]

Linke J, Du J, Loewenhoff T, et al.

Challenges for plasma-facing components in nuclear fusion

[J]. Matter Radiat. Extremes, 2019, 4: 056201

[本文引用: 3]

Li Y, Morgan T W, Vermeij T, et al.

Recrystallization-mediated crack initiation in tungsten under simultaneous high-flux hydrogen plasma loads and high-cycle transient heating

[J]. Nucl. Fusion, 2021, 61: 046018

[本文引用: 1]

Durif A, Richou M, Kermouche G, et al.

Numerical study of the influence of tungsten recrystallization on the divertor component lifetime

[J]. Int. J. Fract., 2021, 230: 83

Li C J, Zhu D H, Ding R, et al.

Numerical analysis of recrystallization behaviors for W monoblock under cyclic high heat flux

[J]. Nucl. Mater. Energy, 2022, 32: 101227

[本文引用: 1]

Hirai T, Ezato K, Majerus P.

ITER relevant high heat flux testing on plasma facing surfaces

[J]. Mater. Trans., 2005, 46: 412

[本文引用: 1]

Konings R J M. Comprehensive Nuclear Materials [M]. Amsterdam: Elsevier, 2012: 551

Raffray A R, Nygren R, Whyte D G, et al.

High heat flux components-readiness to proceed from near term fusion systems to power plants

[J]. Fusion Eng. Des., 2010, 85: 93

Mazul I, Alekseev A, Belyakov V, et al.

Russian development of enhanced heat flux technologies for ITER first wall

[J]. Fusion Eng. Des., 2012, 87: 437

[本文引用: 1]

Li C J.

Study on the surface damages of tungsten under high plasma heat fluxes in Tokamak

[D]. Hefei: University of Science and Technology of China, 2020

[本文引用: 1]

李长君.

托卡马克等离子体高热流下钨表面损伤行为研究

[D]. 合肥: 中国科学技术大学, 2020

[本文引用: 1]

Gao B F.

Material damage of divertor and limiter and its impact on plasma operation in EAST

[D]. Hefei: University of Science and Technology of China, 2023

高彬富.

EAST偏滤器和限制器材料损伤及其对等离子体运行影响的研究

[D]. 合肥: 中国科学技术大学, 2023

Gao B F, Ding R, Xie H, et al.

Plasma-facing components damage and its effects on plasma performance in EAST tokamak

[J]. Fusion Eng. Des., 2020, 156: 111616

[本文引用: 1]

Wu Y C, Yao G, Luo L M, et al.

Research progress in heat load damage behavior of tungsten and tungsten base materials for nuclear fusion reactor

[J]. Chin. J. Nonferrous Met., 2018, 28: 719

[本文引用: 1]

吴玉程, 姚 刚, 罗来马 .

核聚变堆用钨及钨基材料热负荷损伤行为的研究进展

[J]. 中国有色金属学报, 2018, 28: 719

[本文引用: 1]

Mcdowell D L.

Basic issues in the mechanics of high cycle metal fatigue

[J]. Int. J. Fract., 1996, 80: 103

[本文引用: 1]

Xie Z M, Miao S, Liu R, et al.

Recrystallization and thermal shock fatigue resistance of nanoscale ZrC dispersion strengthened W alloys as plasma-facing components in fusion devices

[J]. J. Nucl. Mater., 2017, 496: 41

[本文引用: 3]

Minissale M, Durif A, Kermouche G, et al.

Grain growth and damages induced by transient heat loads on W

[J]. Phys. Scr., 2021, 96: 124032

[本文引用: 6]

Seo M, Echols J R, Winfrey A L.

Morphological and nanomechanical changes in tungsten in high heat flux conditions

[J]. npj Mater. Degrad., 2020, 4: 30

[本文引用: 1]

Seo M, Wang K, Echols J R, et al.

Microstructure deformation and near-pore environment of resolidified tungsten in high heat flux conditions

[J]. J. Nucl. Mater., 2022, 565: 153725

[本文引用: 1]

Gebhart T E, Baylor L R, Rapp J, et al.

Characterization of an electrothermal plasma source for fusion transient simulations

[J]. J. Appl. Phys., 2018, 123: 033301

[本文引用: 1]

Gebhart T E, Martine-Rodriguez R A, Baylor L R, et al.

Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field

[J]. J. Appl. Phys., 2017, 122: 063302

[本文引用: 1]

Yang W H, Jiang S, Chen L, et al.

Transient heat thermal load characteristics produced by a three-electrode capillary discharge generator

[J]. Phys. Plasmas, 2021, 28: 113503

[本文引用: 1]

Chen L, Yang W H, Fan H, et al.

The injected plasma triggered breakdown of the trigatron spark gap

[J]. Phys. Plasmas, 2020, 27: 023501

[本文引用: 1]

Jiang S, Chen L, Li W H, et al.

Evolution of tungsten degradation under different cyclic ELM-like high heat flux plasma

[J]. J. Nucl. Mater., 2024, 588: 154762

[本文引用: 5]

Li W H, He Y Z, Jiang S, et al.

Research on corrosion and damage characteristics of tungsten caused by capillary discharge transient high thermal load

[J]. Proc. CSEE, 2023, 43: 6914

[本文引用: 2]

李伟昊, 贺玉哲, 蒋 仕 .

毛细管放电瞬态高热负荷对钨靶侵蚀损伤特性研究

[J]. 中国电机工程学报, 2023, 43: 6914

[本文引用: 2]

Lian Y Y, Liu X, Feng F, et al.

Manufacturing and high heat flux testing of brazed flat-type W/CuCrZr plasma facing components

[J]. Plasma Sci. Technol., 2016, 18: 184

[本文引用: 1]

Fukuda M, Seki Y, Ezato K, et al.

Effect of cyclic heat loading on pure tungsten for the ITER divertor

[J]. J. Nucl. Mater., 2020, 542: 152509

[本文引用: 4]

Pintsuk G, Missirlian M, Luo G N, et al.

High heat flux testing of newly developed tungsten components for WEST

[J]. Fusion Eng. Des., 2021, 173: 112835

[本文引用: 1]

Dorow-Gerspach D, Kirchner A, Loewenhoff T, et al.

Additive manufacturing of high density pure tungsten by electron beam melting

[J]. Nucl. Mater. Energy, 2021, 28: 101046

[本文引用: 5]

Majerus P, Duwe R, Hirai T, et al.

The new electron beam test facility JUDITH II for high heat flux experiments on plasma facing components

[J]. Fusion Eng. Des., 2005, 75-79: 365

[本文引用: 1]

Yang G Y, Yang P W, Yang K, et al.

Effect of processing parameters on the density, microstructure and strength of pure tungsten fabricated by selective electron beam melting

[J]. Int. J. Refract. Met. Hard Mater., 2019, 84: 105040

[本文引用: 1]

Zhou X, Liu X H, Zhang D D, et al.

Balling phenomena in selective laser melted tungsten

[J]. J. Mater. Process. Technol., 2015, 222: 33

[本文引用: 1]

Zhou X, Liu W.

Melting and solidifying behavior in single layer selective laser of pure tungsten powder

[J]. Chin. J. Lasers, 2016, 43: 0503006

周 鑫, 刘 伟.

纯钨单层铺粉激光选区熔化/凝固行为

[J]. 中国激光, 2016, 43: 0503006

Bose A, Schuh C A, Tobia J C, et al.

Traditional and additive manufacturing of a new Tungsten heavy alloy alternative

[J]. Int. J. Refract. Met. Hard Mater., 2018, 73: 22

Zi X H, Chen C, Wang X J, et al.

Spheroidisation of tungsten powder by radio frequency plasma for selective laser melting

[J]. Mater. Sci. Technol., 2018, 34: 735

Mostafaei A, Elliott A M, Barnes J E, et al.

Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges

[J]. Prog. Mater. Sci., 2021, 119: 100707

[本文引用: 1]

Wu Y C.

The routes and mechanism of plasma facing tungsten materials to improve ductility

[J]. Acta Metall. Sin., 2019, 55: 171

DOI      [本文引用: 1]

As a candidate for plasma facing material (PFM) in nuclear fusion situation, polycrystalline W with a characteristic of bad low temperature ductility shows brittle behaviour at room temperature and possesses a high ductile-to-brittle transition temperature, which limits its engineering application. In this paper, several common methods of grain refinement, addition of alloying elements, second-phase particles and tungsten fibre, and deformation processing for improving ductility of W are illustrated. To in-depth comprehend of how to improving W toughening, these toughening methods are discussed from intrinsic or extrinsic toughening mechanisms. Furthermore, the research status and development prospects for improving ductility of W materials have been presented.

吴玉程.

面向等离子体W材料改善韧性的方法与机制

[J]. 金属学报, 2019, 55: 171

DOI      [本文引用: 1]

作为面向等离子体候选材料,金属W多晶材料具有低韧性的特点,表现出室温脆性行为和高的韧脆转变温度,极大地限制了其在工程上的应用。针对当前常用的改善W韧性的方法:细化晶粒,添加合金化元素、第二相颗粒和W纤维以及加工变形技术,本文从内韧化和外韧化2种韧化机制来阐述各种韧化方法,以加深对改善W韧性的理解。结合目前国内外研究现状,对改善钨基材料的方法进行讨论并对改善钨基材料发展方向进行简单展望。

Li P, Lin Q, Zhou Y F, et al.

TEM analysis of microstructure evolution process of pure tungsten under high pressure torsion

[J]. Acta Metall. Sin., 2019, 55: 521

DOI      [本文引用: 1]

Refractory metal tungsten has wide applications in many fields such as aerospace, national defense, military and nuclear industry due to its excellent comprehensive mechanical properties. As the demand for high-performance materials in the new era is increasing, existing materials cannot meet the performance requirements under extreme conditions. The high pressure torsion (HPT) process can produce severe shear deformation and densify the material effectively, leading to ultrafine-grain structure with non-equilibrium grain boundaries and having a significant effect on improving the overall performance of pure tungsten materials. HPT process is used to prepare an ultrafine-grain material with excellent comprehensive performance, which can broaden the application field of refractory metal tungsten and promote the engineering application of high-performance materials. The HPT experiment was carried out on commercial pure tungsten at a relatively low temperature, and the microstructure evolution during HPT processing at various turning numbers has been investigated by means of EBSD, TEM and HRTEM. It was found that with the strain increasing, the grains were refined significantly, dislocation density and the ratio of non-equilibrium grain boundary increased obviously. Moreover, it was transparent that the low angle grain boundary transform into high angle grain boundary during HPT processing. At the same time, the dislocation structure moved to grain boundary gradually so that there was no obvious defect in fined grains. When the equivalent strain increased to 5.5, the deformation mode of grains transformed from intracrystalline sliding to grain boundary sliding, because the size of some grains was close to the mean free path of dislocation.

李 萍, 林 泉, 周玉峰 .

纯W高压扭转显微组织演化过程TEM分析

[J]. 金属学报, 2019, 55: 521

[本文引用: 1]

Ganeev A V, Islamgaliev R K, Valiev R Z.

Refinement of tungsten microstructure upon severe plastic deformation

[J]. Phys. Met. Metall., 2014, 115: 139

Kecskes L J, Cho K C, Dowding R J, et al.

Grain size engineering of bcc refractory metals: Top-down and bottom-up-application to tungsten

[J]. Mater. Sci. Eng., 2007, A467: 33

[本文引用: 1]

Zhou Z J, Pintsuk G, Linke J, et al.

Transient high heat load tests on pure ultra-fine grained tungsten fabricated by resistance sintering under ultra-high pressure

[J]. Fusion Eng. Des., 2010, 85: 115

[本文引用: 7]

Zhang X X, Yan Q Z, Lang S T, et al.

Thermal shock performance of sintered pure tungsten with various grain sizes under transient high heat flux test

[J]. J. Fusion Energy, 2016, 35: 666

[本文引用: 6]

Zhang X, Tian J, Xue M T, et al.

Ta-W refractory alloys with high strength at 2000 oC

[J]. Acta Metall. Sin., 2022, 58: 1253

[本文引用: 1]

张 旭, 田 谨, 薛敏涛 .

2000 ℃高温高承载的Ta-W难熔合金

[J]. 金属学报, 2022, 58: 1253

[本文引用: 1]

Wang Z, Yuan Y, Arshad K, et al.

Effects of tantalum concentration on the microstructures and mechanical properties of tungsten-tantalum alloys

[J]. Fusion Eng. Des., 2017, 125: 496

[本文引用: 1]

Linke J, Loewenhoff T, Massaut V, et al.

Performance of different tungsten grades under transient thermal loads

[J]. Nucl. Fusion, 2011, 51: 073017

[本文引用: 1]

Li B S, Marrow T J, Armstrong D E J.

Measuring the brittle-to-ductile transition temperature of tungsten-tantalum alloy using chevron-notched micro-cantilevers

[J]. Scr. Mater., 2020, 180: 77

[本文引用: 1]

Gonderman S, Tripathi J K, Sinclair G, et al.

Effects of in situ dual ion beam (He+ and D+) irradiation with simultaneous pulsed heat loading on surface morphology evolution of tungsten-tantalum alloys

[J]. Nucl. Fusion, 2018, 58: 026016

[本文引用: 1]

Nogami S, Wirtz M, Lied P, et al.

Thermal shock behavior under deuterium plasma exposure of tungsten-tantalum alloys

[J]. Phys. Scr., 2021, 96: 114011

[本文引用: 5]

Arshad K, Guo W, Wang J, et al.

Influence of vanadium precursor powder size on microstructures and properties of W-V alloy

[J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 59

[本文引用: 1]

Arshad K, Zhao M Y, Yuan Y, et al.

Effects of vanadium concentration on the densification, microstructures and mechanical properties of tungsten vanadium alloys

[J]. J. Nucl. Mater., 2014, 455: 96

[本文引用: 1]

Arshad K, Ding D, Wang J, et al.

Surface cracking of tungsten-vanadium alloys under transient heat loads

[J]. Nucl. Mater. Energy, 2015, 3-4: 32

[本文引用: 4]

Cui H J, Liu N, Luo L M, et al.

A prospect of using ternary W-5 wt%V-5 wt%Ta alloy manufactured by mechanical alloying and spark plasma sintering as plasma-facing material

[J]. J. Alloys Compd., 2022, 903: 163899

[本文引用: 1]

Zhao B L, Xie Z M, Liu R, et al.

Fabrication of an ultrafine-grained W-ZrC-Re alloy with high thermal stability

[J]. Fusion Eng. Des., 2021, 164: 112208

[本文引用: 1]

Du F Y, Xu Y P, Tian Y, et al.

Comparative study of microstructural evolution in W-3Re alloy under high-temperature conditions: High heat flux loading versus furnace heating

[J]. Nucl. Mater. Energy, 2024, 39: 101646

[本文引用: 1]

Watanabe S, Nogami S, Reiser J, et al.

Tensile and impact properties of tungsten-rhenium alloy for plasma-facing components in fusion reactor

[J]. Fusion Eng. Des., 2019, 148: 111323

[本文引用: 1]

Fukuda M, Nogami S, Hasegawa A, et al.

Tensile properties of K-doped W-3%Re

[J]. Fusion Eng. Des., 2014, 89: 1033

[本文引用: 1]

Ma X L, Wang T, Zhang X X, et al.

Surface modification and deuterium retention in hot-rolled potassium doped tungsten alloy exposed to deuterium plasma

[J]. J. Nucl. Mater., 2022, 568: 153890

[本文引用: 1]

Ma X L, Feng F, Zhang X X, et al.

Effect of Fe11+ ion combined with helium and deuterium plasmas irradiation on the transient thermal shock behaviors of pure and potassium-doped tungsten

[J]. J. Nucl. Mater., 2023, 573: 154100

[本文引用: 4]

Wang Y J, Yan Q Z.

Preparation of hot-rolled potassium doped tungsten (KW) thick plate and performance of KW-Cu monoblock mock-ups under high heat flux testing

[J]. Nucl. Mater. Energy, 2020, 23: 100744

[本文引用: 1]

Fu X G, Zheng M X, Liu X, et al.

Vacancy-type defects in H + 6%He neutral beam irradiated WK alloy probed by slow positron beam

[J]. Phys. Status Solidi, 2022, 219A: 2100497

[本文引用: 1]

Chen L Q, Li S, Qiu W B, et al.

Combining the K-bubble strengthening and Y-doping: Microstructure, mechanical/thermal properties, and thermal shock behavior of W-K-Y alloys

[J]. Int. J. Refract. Met. Hard Mater., 2022, 103: 105739

[本文引用: 8]

Hirai T, Pintsuk G, Linke J, et al.

Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures

[J]. J. Nucl. Mater., 2009, 390-391: 751

[本文引用: 1]

Uytdenhouwen I, Decréton M, Hirai T, et al.

Influence of recrystallization on thermal shock resistance of various tungsten grades

[J]. J. Nucl. Mater., 2007, 363-365: 1099

[本文引用: 4]

He B, Huang B, Xiao Y, et al.

Preparation and thermal shock characterization of yttrium doped tungsten-potassium alloy

[J]. J. Alloys Compd., 2016, 686: 298

[本文引用: 1]

Shi J B, Song J P, Liang M X, et al.

Effects of minor rhenium additions on the thermal properties and recrystallization temperature of tungsten alloy

[J]. Nucl. Mater. Energy, 2024, 38: 101609

[本文引用: 1]

Xiao Y, Huang B, He B, et al.

Surface morphology and microstructure evolution of trace titanium and yttrium in W-K-Mo-Ti-Y alloys under transient heat loads

[J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 299

[本文引用: 1]

Chookajorn T, Park M, Schuh C A.

Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W-Cr

[J]. J. Mater. Res., 2015, 30: 151

[本文引用: 1]

Park M, Schuh C A.

Accelerated sintering in phase-separating nanostructured alloys

[J]. Nat. Commun., 2015, 6: 6858

DOI      PMID     

Park, Mansoo; Schuh, Christopher A. MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA.

Tang F W, Liu X M, Wang H B, et al.

Solute segregation and thermal stability of nanocrystalline solid solution systems

[J]. Nanoscale, 2019, 11: 1813

DOI      PMID     

A model coupling first principles and thermodynamics was developed to describe the thermal stability of a nanograin structure in solid solution alloys. The thermodynamic functions of solute segregation and conditions for thermal stabilization were demonstrated for both strongly and weakly solute-segregating systems. The dependence of segregation behavior on the grain size, solute concentration and temperature was quantified, where the parameters to control destabilization of the nanograin structure at a given temperature were predicted. For the first time it was found that there exists a transformation from the single-extreme to dual-extreme rule of the total Gibbs free energies of the solid solution systems with the decrease of solute concentration or increase of temperature. The model calculations were confirmed quantitatively by the experimental results, and a nanocrystalline W-10 at%Sc solid solution with a highly stable grain structure in a broad range from room temperature to 1600 K was prepared. The universal mechanism disclosed in this study will facilitate the design of nanocrystalline alloys with high thermal stability through matching of the doping element and the initial grain size.

Du W L, Hou C, Li Y R, et al.

Effect of addition of Cr and Sc on high-temperature stability of grain structure in W-based alloys

[J]. Acta Metall. Sin., 2024, DOI: 10.11900/0412.1961.2024.00052

[本文引用: 1]

杜文力, 侯 超, 李昱嵘 .

Cr和Sc元素对钨基合金晶粒组织高温稳定性的影响

[J]. 金属学报, 2024, DOI: 10.11900/0412.1961.2024.00052

[本文引用: 1]

Wu Y C, Hou Q Q, Luo L M, et al.

Preparation of ultrafine-grained/nanostructured tungsten materials: an overview

[J]. J. Alloys Compd., 2019, 779: 926

[本文引用: 1]

Zhao Z H, Yao G, Luo L M, et al.

Anisotropy and stability of the mechanical properties of the W alloy plate reinforced with Y-Zr-O particles and prepared by a wet chemical method

[J]. Int. J. Refract. Met. Hard Mater., 2021, 99: 105597

[本文引用: 1]

Wang M M, Xie Z M, Deng H W, et al.

Thermal shock fatigue behaviors of various W-0.5 wt%ZrC materials under repetitive transient heat loads

[J]. J. Nucl. Mater., 2020, 534: 152152

[本文引用: 5]

Feng F, Lian Y Y, Liu X, et al.

Transient thermal shock performance of sintered W-TaC by SPS

[J]. Rare Met. Mater. Eng., 2017, 46: 3544

[本文引用: 1]

封 范, 练友运, 刘 翔 .

SPS烧结W-TaC的耐瞬态热冲击性能

[J]. 稀有金属材料与工程, 2017, 46: 3544

[本文引用: 1]

Feng F, Lian Y Y, Wang J B, et al.

Mechanical properties and thermal shock performance of high-energy-rate-forged W-1%TaC alloy

[J]. Crystals, 2022, 12: 1047

[本文引用: 5]

Tejado E, Martin A, Pastor J Y.

Effect of Ti and TiC alloyants on the mechanical properties of W-based armour materials

[J]. J. Nucl. Mater., 2019, 514: 238

DOI      [本文引用: 1]

The main requirements of tungsten materials for structural divertor applications comprise properties like high thermal conductivity, high-temperature strength and stability, high recrystallization temperature, and enough ductility for an operation period of about two years under massive neutron load [1]. However, the mechanical properties of tungsten commercial products are still one of the main concerns for their use in structural armour applications. With the aim of improving this aspect, two W/Ti based products are presented in this paper: (1) a W-Ti alloy with a Ti solid solution and (2) an UFG microstructure product with TiC dispersed particles; both with the aim of obtaining a suitable fusion armour material with enhanced properties, especially at very high temperatures when pure tungsten suffers strong thermal degradation. It has been reported that strength and recrystallization control can be improved with dispersed TiC particles which inhibits the grain growth. Furthermore, both flexural strength and fracture toughness were twice and even three times higher than the ones observed for our reference pure tungsten produced by the same group and technique, which is, indeed, a great success. However, the intrinsic brittleness of tungsten cannot be enhanced by particle dispersion or solid solution with Ti. On the contrary, intergranular rupture is enhanced even more, and the DBTT is even higher than that of pure W. (C) 2018 Elsevier B.V. All rights reserved.

Tan X Y, Li P, Luo L M, et al.

Effect of second-phase particles on the properties of W-based materials under high-heat loading

[J]. Nucl. Mater. Energy, 2016, 9: 399

[本文引用: 6]

Yao G, Tan X Y, Luo L M, et al.

Surface damage evolution during transient thermal shock of W-2 vol%Y2O3 composite material in different surfaces

[J]. Fusion Eng. Des., 2019, 139: 86

[本文引用: 9]

Shen T L, Dai Y, Lee Y.

Microstructure and tensile properties of tungsten at elevated temperatures

[J]. J. Nucl. Mater., 2016, 468: 348

[本文引用: 1]

Yao G, Zhao Z H, Luo L M, et al.

Damage evolutions of completely recrystallized W-Y2O3 composite evaluated using the dual effects of electron beam thermal shock and helium ion irradiation

[J]. Mater. Chem. Phys., 2021, 271: 124947

[本文引用: 6]

Lv Y Q, Han Y, Zhao S Q, et al.

Nano-in-situ-composite ultrafine-grained W-Y2O3 materials: Microstructure, mechanical properties and high heat load performances

[J]. J. Alloys Compd., 2021, 855: 157366

[本文引用: 1]

Lv Y Q, Fan Y, Zhao S Q, et al.

The microstructure evolution, damage behavior and failure analysis of fine-grained W-Y2O3 composites under high transient thermal shock

[J]. Int. J. Refract. Met. Hard Mater., 2022, 107: 105905

[本文引用: 10]

Chen Z, Yang J J, Zhang L, et al.

Effect of La2O3 content on the densification, microstructure and mechanical property of W-La2O3 alloy via pressureless sintering

[J]. Mater. Charact., 2021, 175: 111092

[本文引用: 1]

Nogami S, Hasegawa A, Fukuda M, et al.

Mechanical properties of tungsten: Recent research on modified tungsten materials in Japan

[J]. J. Nucl. Mater., 2021, 543: 152506

Zhang X X, Yan Q Z, Yang C T, et al.

Microstructure, mechanical properties and bonding characteristic of deformed tungsten

[J]. Int. J. Refract. Met. Hard Mater., 2014, 43: 302

[本文引用: 1]

Shirokova V, Laas T, Ainsaar A, et al.

Comparison of damages in tungsten and tungsten doped with lanthanum-oxide exposed to dense deuterium plasma shots

[J]. J. Nucl. Mater., 2013, 435: 181

[本文引用: 1]

Zhang X X, Yan Q Z.

Morphology evolution of La2O3 and crack characteristic in W-La2O3 alloy under transient heat loading

[J]. J. Nucl. Mater., 2014, 451: 283

[本文引用: 5]

Gaudio P, Montanari R, Pakhomova E, et al.

W-1%La2O3 submitted to a single laser pulse: effect of particles on heat transfer and surface morphology

[J]. Metals, 2018, 8: 389

[本文引用: 1]

Chen Z, Qin M L, Yang J J, et al.

Thermal stability and grain growth kinetics of ultrafine-grained W with various amount of La2O3 addition

[J]. Metall. Mater. Trans., 2020, 51A: 4113

[本文引用: 1]

Kanpara S, Khirwadkar S, Belsare S, et al.

Fabrication of tungsten & tungsten alloy and its high heat load testing for fusion applications

[J]. Mater. Today: Proc., 2016, 3: 3055

[本文引用: 1]

Zhao M Y, Zhou Z J, Zhong M, et al.

Thermal shock behavior of fine grained W-Y2O3 materials fabricated via two different manufacturing technologies

[J]. J. Nucl. Mater., 2016, 470: 236

[本文引用: 1]

Zhou Z J, Tan J, Qu D D, et al.

Basic characterization of oxide dispersion strengthened fine-grained tungsten based materials fabricated by mechanical alloying and spark plasma sintering

[J]. J. Nucl. Mater., 2012, 431: 202

[本文引用: 8]

Yao G, Chen H Y, Luo L M, et al.

Enhanced thermal-mechanical properties of rolled tungsten bulk material reinforced by in situ nanosized Y-Zr-O particles

[J]. Nucl. Eng. Technol., 2024, 56: 2141

[本文引用: 5]

Dong Z, Ma Z Q, Liu Y C.

Accelerated sintering of high-performance oxide dispersion strengthened alloy at low temperature

[J]. Acta Mater., 2021, 220: 117309

[本文引用: 1]

Liu Z, Yan S, Luo L M, et al.

Effect of Hf content on microstructure and properties of ultrafine W-Y2O3 composites prepared by wet chemical method

[J]. Chin. J. Nonferrous Met., 2024, 34: 125

[本文引用: 1]

刘 祯, 颜 硕, 罗来马 .

Hf含量对湿化学法制备超细W-Y2O3复合材料显微组织与性能的影响

[J]. 中国有色金属学报, 2024, 34: 125

[本文引用: 1]

Zhang X X, Gong Z, Huang J J, et al.

Thermal shock resistance of tungsten with various deformation degrees under transient high heat flux

[J]. Mater. Res. Express, 2020, 7: 066503

[本文引用: 4]

Xie Z M, Miao S, Zhang T, et al.

Recrystallization behavior and thermal shock resistance of the W-1.0 wt%TaC alloy

[J]. J. Nucl. Mater., 2018, 501: 282

[本文引用: 1]

Liu X, Lian Y Y, Chen L, et al.

Experimental and numerical simulations of ELM-like transient damage behaviors to different grade tungsten and tungsten alloys

[J]. J. Nucl. Mater., 2015, 463: 166

[本文引用: 1]

He C Y, Feng F, Wang J B, et al.

Improving the mechanical properties and thermal shock resistance of W-Y2O3 composites by two-step high-energy-rate forging

[J]. Int. J. Refract. Met. Hard Mater., 2022, 107: 105883

[本文引用: 1]

Chen L Q, Huang B, Yang X L, et al.

High thermal shock resistance realized by Ti/TiH2 doped tungsten-potassium alloys

[J]. J. Alloys Compd., 2019, 780: 388

[本文引用: 1]

Lian Y Y, liu X, Cheng Z K, et al.

Thermal shock performance of CVD tungsten coating at elevated temperatures

[J]. J. Nucl. Mater., 2014, 455: 371

[本文引用: 1]

Zhang X X, Yan Q Z.

The thermal crack characteristics of rolled tungsten in different orientations

[J]. J. Nucl. Mater., 2014, 444: 428

[本文引用: 4]

/