|
|
偏滤器用钨基材料的热负荷损伤行为研究进展 |
罗来马1,2,3, 陈宇1, 姚刚4, 朱晓勇1,2,3( ), 朱大焕5, 吴玉程1,2,3 |
1 合肥工业大学 材料科学与工程学院 合肥 230009 2 合肥工业大学 高性能铜合金材料及成形加工教育部工程研究中心 合肥 230009 3 合肥工业大学 有色金属与加工技术国家地方联合工程研究中心 合肥 230009 4 内蒙古科技大学 材料科学与工程学院 包头 014010 5 中国科学院合肥物质科学研究院 等离子体物理研究所 合肥 230031 |
|
Research Progress on Heat Load Damage Behavior of Tungsten-Based Materials for Divertor |
LUO Laima1,2,3, CHEN Yu1, YAO Gang4, ZHU Xiaoyong1,2,3( ), ZHU Dahuan5, WU Yucheng1,2,3 |
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China 2 Engineering Research Center of High-Performance Copper Alloy Materials and Processing, Ministry of Education, Hefei University of Technology, Hefei 230009, China 3 National-Local Joint Engineering Research Centre of Nonferrous Metals and Processing Technology, Hefei University of Technology, Hefei 230009, China 4 School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China 5 Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China |
引用本文:
罗来马, 陈宇, 姚刚, 朱晓勇, 朱大焕, 吴玉程. 偏滤器用钨基材料的热负荷损伤行为研究进展[J]. 金属学报, 2025, 61(7): 961-978.
Laima LUO,
Yu CHEN,
Gang YAO,
Xiaoyong ZHU,
Dahuan ZHU,
Yucheng WU.
Research Progress on Heat Load Damage Behavior of Tungsten-Based Materials for Divertor[J]. Acta Metall Sin, 2025, 61(7): 961-978.
1 |
International Energy Agency. World energy outlook 2024 [R]. Paris: International Energy Agency, 2024
|
2 |
Kleyn A W, Lopes Cardozo N J, Samm U. Plasma-surface interaction in the context of ITER [J]. Phys. Chem. Chem. Phys., 2006, 8: 1761
pmid: 16633660
|
3 |
Hirai T, Escourbiac F, Carpentier-Chouchana S, et al. ITER tungsten divertor design development and qualification program [J]. Fusion Eng. Des., 2013, 88: 1798
|
4 |
Barabash V, Akiba M, Mazul I, et al. Selection, development and characterisation of plasma facing materials for ITER [J]. J. Nucl. Mater., 1996, 233-237: 718
|
5 |
Guseva M I, Suvorov A L, Korshunov S N, et al. Sputtering of beryllium, tungsten, tungsten oxide and mixed W-C layers by deuterium ions in the near-threshold energy range [J]. J. Nucl. Mater., 1999, 266-269: 222
|
6 |
Reiser J, Rieth M, Dafferner B, et al. Tungsten foil laminate for structural divertor applications-basics and outlook [J]. J. Nucl. Mater., 2012, 423: 1
|
7 |
Rubel M. Structure materials in fusion reactors: Issues related to tritium, radioactivity and radiation-induced effects [J]. Fusion Sci. Technol., 2010, 57: 474
|
8 |
Dicarlo J A, Stanley J T. Energy dependence of electron-induced radiation damage in tungsten [J]. Radiat. Eff., 1971, 10: 259
|
9 |
Pitts R A, Bonnin X, Escourbiac F, et al. Physics basis for the first ITER tungsten divertor [J]. Nucl. Mater. Energy, 2019, 20: 100696
|
10 |
Wan Y X, Li J G, Liu Y, et al. Overview of the present progress and activities on the CFETR [J]. Nucl. Fusion, 2017, 57: 102009
|
11 |
Barrett T R, Ellwood G, Pérez G, et al. Progress in the engineering design and assessment of the European DEMO first wall and divertor plasma facing components [J]. Fusion Eng. Des., 2016: 109-111: 917
|
12 |
Coenen J W, Antusch S, Aumann M, et al. Materials for DEMO and reactor applications—Boundary conditions and new concepts [J]. Phys. Scr., 2016, T167: 014002
|
13 |
Linke J, Du J, Loewenhoff T, et al. Challenges for plasma-facing components in nuclear fusion [J]. Matter Radiat. Extremes, 2019, 4: 056201
|
14 |
Li Y, Morgan T W, Vermeij T, et al. Recrystallization-mediated crack initiation in tungsten under simultaneous high-flux hydrogen plasma loads and high-cycle transient heating [J]. Nucl. Fusion, 2021, 61: 046018
|
15 |
Durif A, Richou M, Kermouche G, et al. Numerical study of the influence of tungsten recrystallization on the divertor component lifetime [J]. Int. J. Fract., 2021, 230: 83
|
16 |
Li C J, Zhu D H, Ding R, et al. Numerical analysis of recrystallization behaviors for W monoblock under cyclic high heat flux [J]. Nucl. Mater. Energy, 2022, 32: 101227
|
17 |
Hirai T, Ezato K, Majerus P. ITER relevant high heat flux testing on plasma facing surfaces [J]. Mater. Trans., 2005, 46: 412
|
18 |
Konings R J M. Comprehensive Nuclear Materials [M]. Amsterdam: Elsevier, 2012: 551
|
19 |
Raffray A R, Nygren R, Whyte D G, et al. High heat flux components-readiness to proceed from near term fusion systems to power plants [J]. Fusion Eng. Des., 2010, 85: 93
|
20 |
Mazul I, Alekseev A, Belyakov V, et al. Russian development of enhanced heat flux technologies for ITER first wall [J]. Fusion Eng. Des., 2012, 87: 437
|
21 |
Li C J. Study on the surface damages of tungsten under high plasma heat fluxes in Tokamak [D]. Hefei: University of Science and Technology of China, 2020
|
21 |
李长君. 托卡马克等离子体高热流下钨表面损伤行为研究 [D]. 合肥: 中国科学技术大学, 2020
|
22 |
Gao B F. Material damage of divertor and limiter and its impact on plasma operation in EAST [D]. Hefei: University of Science and Technology of China, 2023
|
22 |
高彬富. EAST偏滤器和限制器材料损伤及其对等离子体运行影响的研究 [D]. 合肥: 中国科学技术大学, 2023
|
23 |
Gao B F, Ding R, Xie H, et al. Plasma-facing components damage and its effects on plasma performance in EAST tokamak [J]. Fusion Eng. Des., 2020, 156: 111616
|
24 |
Wu Y C, Yao G, Luo L M, et al. Research progress in heat load damage behavior of tungsten and tungsten base materials for nuclear fusion reactor [J]. Chin. J. Nonferrous Met., 2018, 28: 719
|
24 |
吴玉程, 姚 刚, 罗来马 等. 核聚变堆用钨及钨基材料热负荷损伤行为的研究进展 [J]. 中国有色金属学报, 2018, 28: 719
|
25 |
Mcdowell D L. Basic issues in the mechanics of high cycle metal fatigue [J]. Int. J. Fract., 1996, 80: 103
|
26 |
Xie Z M, Miao S, Liu R, et al. Recrystallization and thermal shock fatigue resistance of nanoscale ZrC dispersion strengthened W alloys as plasma-facing components in fusion devices [J]. J. Nucl. Mater., 2017, 496: 41
|
27 |
Minissale M, Durif A, Kermouche G, et al. Grain growth and damages induced by transient heat loads on W [J]. Phys. Scr., 2021, 96: 124032
|
28 |
Seo M, Echols J R, Winfrey A L. Morphological and nanomechanical changes in tungsten in high heat flux conditions [J]. npj Mater. Degrad., 2020, 4: 30
|
29 |
Seo M, Wang K, Echols J R, et al. Microstructure deformation and near-pore environment of resolidified tungsten in high heat flux conditions [J]. J. Nucl. Mater., 2022, 565: 153725
|
30 |
Gebhart T E, Baylor L R, Rapp J, et al. Characterization of an electrothermal plasma source for fusion transient simulations [J]. J. Appl. Phys., 2018, 123: 033301
|
31 |
Gebhart T E, Martine-Rodriguez R A, Baylor L R, et al. Material impacts and heat flux characterization of an electrothermal plasma source with an applied magnetic field [J]. J. Appl. Phys., 2017, 122: 063302
|
32 |
Yang W H, Jiang S, Chen L, et al. Transient heat thermal load characteristics produced by a three-electrode capillary discharge generator [J]. Phys. Plasmas, 2021, 28: 113503
|
33 |
Chen L, Yang W H, Fan H, et al. The injected plasma triggered breakdown of the trigatron spark gap [J]. Phys. Plasmas, 2020, 27: 023501
|
34 |
Jiang S, Chen L, Li W H, et al. Evolution of tungsten degradation under different cyclic ELM-like high heat flux plasma [J]. J. Nucl. Mater., 2024, 588: 154762
|
35 |
Li W H, He Y Z, Jiang S, et al. Research on corrosion and damage characteristics of tungsten caused by capillary discharge transient high thermal load [J]. Proc. CSEE, 2023, 43: 6914
|
35 |
李伟昊, 贺玉哲, 蒋 仕 等. 毛细管放电瞬态高热负荷对钨靶侵蚀损伤特性研究 [J]. 中国电机工程学报, 2023, 43: 6914
|
36 |
Lian Y Y, Liu X, Feng F, et al. Manufacturing and high heat flux testing of brazed flat-type W/CuCrZr plasma facing components [J]. Plasma Sci. Technol., 2016, 18: 184
|
37 |
Fukuda M, Seki Y, Ezato K, et al. Effect of cyclic heat loading on pure tungsten for the ITER divertor [J]. J. Nucl. Mater., 2020, 542: 152509
|
38 |
Pintsuk G, Missirlian M, Luo G N, et al. High heat flux testing of newly developed tungsten components for WEST [J]. Fusion Eng. Des., 2021, 173: 112835
|
39 |
Dorow-Gerspach D, Kirchner A, Loewenhoff T, et al. Additive manufacturing of high density pure tungsten by electron beam melting [J]. Nucl. Mater. Energy, 2021, 28: 101046
|
40 |
Majerus P, Duwe R, Hirai T, et al. The new electron beam test facility JUDITH II for high heat flux experiments on plasma facing components [J]. Fusion Eng. Des., 2005, 75-79: 365
|
41 |
Yang G Y, Yang P W, Yang K, et al. Effect of processing parameters on the density, microstructure and strength of pure tungsten fabricated by selective electron beam melting [J]. Int. J. Refract. Met. Hard Mater., 2019, 84: 105040
|
42 |
Zhou X, Liu X H, Zhang D D, et al. Balling phenomena in selective laser melted tungsten [J]. J. Mater. Process. Technol., 2015, 222: 33
|
43 |
Zhou X, Liu W. Melting and solidifying behavior in single layer selective laser of pure tungsten powder [J]. Chin. J. Lasers, 2016, 43: 0503006
|
43 |
周 鑫, 刘 伟. 纯钨单层铺粉激光选区熔化/凝固行为 [J]. 中国激光, 2016, 43: 0503006
|
44 |
Bose A, Schuh C A, Tobia J C, et al. Traditional and additive manufacturing of a new Tungsten heavy alloy alternative [J]. Int. J. Refract. Met. Hard Mater., 2018, 73: 22
|
45 |
Zi X H, Chen C, Wang X J, et al. Spheroidisation of tungsten powder by radio frequency plasma for selective laser melting [J]. Mater. Sci. Technol., 2018, 34: 735
|
46 |
Mostafaei A, Elliott A M, Barnes J E, et al. Binder jet 3D printing—Process parameters, materials, properties, modeling, and challenges [J]. Prog. Mater. Sci., 2021, 119: 100707
|
47 |
Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility [J]. Acta Metall. Sin., 2019, 55: 171
doi: 10.11900/0412.1961.2018.00404
|
47 |
吴玉程. 面向等离子体W材料改善韧性的方法与机制 [J]. 金属学报, 2019, 55: 171
doi: 10.11900/0412.1961.2018.00404
|
48 |
Li P, Lin Q, Zhou Y F, et al. TEM analysis of microstructure evolution process of pure tungsten under high pressure torsion [J]. Acta Metall. Sin., 2019, 55: 521
doi: 10.11900/0412.1961.2018.00165
|
48 |
李 萍, 林 泉, 周玉峰 等. 纯W高压扭转显微组织演化过程TEM分析 [J]. 金属学报, 2019, 55: 521
|
49 |
Ganeev A V, Islamgaliev R K, Valiev R Z. Refinement of tungsten microstructure upon severe plastic deformation [J]. Phys. Met. Metall., 2014, 115: 139
|
50 |
Kecskes L J, Cho K C, Dowding R J, et al. Grain size engineering of bcc refractory metals: Top-down and bottom-up-application to tungsten [J]. Mater. Sci. Eng., 2007, A467: 33
|
51 |
Zhou Z J, Pintsuk G, Linke J, et al. Transient high heat load tests on pure ultra-fine grained tungsten fabricated by resistance sintering under ultra-high pressure [J]. Fusion Eng. Des., 2010, 85: 115
|
52 |
Zhang X X, Yan Q Z, Lang S T, et al. Thermal shock performance of sintered pure tungsten with various grain sizes under transient high heat flux test [J]. J. Fusion Energy, 2016, 35: 666
|
53 |
Zhang X, Tian J, Xue M T, et al. Ta-W refractory alloys with high strength at 2000 oC [J]. Acta Metall. Sin., 2022, 58: 1253
|
53 |
张 旭, 田 谨, 薛敏涛 等. 2000 ℃高温高承载的Ta-W难熔合金 [J]. 金属学报, 2022, 58: 1253
|
54 |
Wang Z, Yuan Y, Arshad K, et al. Effects of tantalum concentration on the microstructures and mechanical properties of tungsten-tantalum alloys [J]. Fusion Eng. Des., 2017, 125: 496
|
55 |
Linke J, Loewenhoff T, Massaut V, et al. Performance of different tungsten grades under transient thermal loads [J]. Nucl. Fusion, 2011, 51: 073017
|
56 |
Li B S, Marrow T J, Armstrong D E J. Measuring the brittle-to-ductile transition temperature of tungsten-tantalum alloy using chevron-notched micro-cantilevers [J]. Scr. Mater., 2020, 180: 77
|
57 |
Gonderman S, Tripathi J K, Sinclair G, et al. Effects of in situ dual ion beam (He+ and D+) irradiation with simultaneous pulsed heat loading on surface morphology evolution of tungsten-tantalum alloys [J]. Nucl. Fusion, 2018, 58: 026016
|
58 |
Nogami S, Wirtz M, Lied P, et al. Thermal shock behavior under deuterium plasma exposure of tungsten-tantalum alloys [J]. Phys. Scr., 2021, 96: 114011
|
59 |
Arshad K, Guo W, Wang J, et al. Influence of vanadium precursor powder size on microstructures and properties of W-V alloy [J]. Int. J. Refract. Met. Hard Mater., 2015, 50: 59
|
60 |
Arshad K, Zhao M Y, Yuan Y, et al. Effects of vanadium concentration on the densification, microstructures and mechanical properties of tungsten vanadium alloys [J]. J. Nucl. Mater., 2014, 455: 96
|
61 |
Arshad K, Ding D, Wang J, et al. Surface cracking of tungsten-vanadium alloys under transient heat loads [J]. Nucl. Mater. Energy, 2015, 3-4: 32
|
62 |
Cui H J, Liu N, Luo L M, et al. A prospect of using ternary W-5 wt%V-5 wt%Ta alloy manufactured by mechanical alloying and spark plasma sintering as plasma-facing material [J]. J. Alloys Compd., 2022, 903: 163899
|
63 |
Zhao B L, Xie Z M, Liu R, et al. Fabrication of an ultrafine-grained W-ZrC-Re alloy with high thermal stability [J]. Fusion Eng. Des., 2021, 164: 112208
|
64 |
Du F Y, Xu Y P, Tian Y, et al. Comparative study of microstructural evolution in W-3Re alloy under high-temperature conditions: High heat flux loading versus furnace heating [J]. Nucl. Mater. Energy, 2024, 39: 101646
|
65 |
Watanabe S, Nogami S, Reiser J, et al. Tensile and impact properties of tungsten-rhenium alloy for plasma-facing components in fusion reactor [J]. Fusion Eng. Des., 2019, 148: 111323
|
66 |
Fukuda M, Nogami S, Hasegawa A, et al. Tensile properties of K-doped W-3%Re [J]. Fusion Eng. Des., 2014, 89: 1033
|
67 |
Ma X L, Wang T, Zhang X X, et al. Surface modification and deuterium retention in hot-rolled potassium doped tungsten alloy exposed to deuterium plasma [J]. J. Nucl. Mater., 2022, 568: 153890
|
68 |
Ma X L, Feng F, Zhang X X, et al. Effect of Fe11+ ion combined with helium and deuterium plasmas irradiation on the transient thermal shock behaviors of pure and potassium-doped tungsten [J]. J. Nucl. Mater., 2023, 573: 154100
|
69 |
Wang Y J, Yan Q Z. Preparation of hot-rolled potassium doped tungsten (KW) thick plate and performance of KW-Cu monoblock mock-ups under high heat flux testing [J]. Nucl. Mater. Energy, 2020, 23: 100744
|
70 |
Fu X G, Zheng M X, Liu X, et al. Vacancy-type defects in H + 6%He neutral beam irradiated WK alloy probed by slow positron beam [J]. Phys. Status Solidi, 2022, 219A: 2100497
|
71 |
Chen L Q, Li S, Qiu W B, et al. Combining the K-bubble strengthening and Y-doping: Microstructure, mechanical/thermal properties, and thermal shock behavior of W-K-Y alloys [J]. Int. J. Refract. Met. Hard Mater., 2022, 103: 105739
|
72 |
Hirai T, Pintsuk G, Linke J, et al. Cracking failure study of ITER-reference tungsten grade under single pulse thermal shock loads at elevated temperatures [J]. J. Nucl. Mater., 2009, 390-391: 751
|
73 |
Uytdenhouwen I, Decréton M, Hirai T, et al. Influence of recrystallization on thermal shock resistance of various tungsten grades [J]. J. Nucl. Mater., 2007, 363-365: 1099
|
74 |
He B, Huang B, Xiao Y, et al. Preparation and thermal shock characterization of yttrium doped tungsten-potassium alloy [J]. J. Alloys Compd., 2016, 686: 298
|
75 |
Shi J B, Song J P, Liang M X, et al. Effects of minor rhenium additions on the thermal properties and recrystallization temperature of tungsten alloy [J]. Nucl. Mater. Energy, 2024, 38: 101609
|
76 |
Xiao Y, Huang B, He B, et al. Surface morphology and microstructure evolution of trace titanium and yttrium in W-K-Mo-Ti-Y alloys under transient heat loads [J]. Int. J. Refract. Met. Hard Mater., 2018, 75: 299
|
77 |
Chookajorn T, Park M, Schuh C A. Duplex nanocrystalline alloys: Entropic nanostructure stabilization and a case study on W-Cr [J]. J. Mater. Res., 2015, 30: 151
|
78 |
Park M, Schuh C A. Accelerated sintering in phase-separating nanostructured alloys [J]. Nat. Commun., 2015, 6: 6858
doi: 10.1038/ncomms7858
pmid: 25901420
|
79 |
Tang F W, Liu X M, Wang H B, et al. Solute segregation and thermal stability of nanocrystalline solid solution systems [J]. Nanoscale, 2019, 11: 1813
doi: 10.1039/c8nr09782h
pmid: 30631871
|
80 |
Du W L, Hou C, Li Y R, et al. Effect of addition of Cr and Sc on high-temperature stability of grain structure in W-based alloys [J]. Acta Metall. Sin., 2024, DOI: 10.11900/0412.1961.2024.00052
|
80 |
杜文力, 侯 超, 李昱嵘 等. Cr和Sc元素对钨基合金晶粒组织高温稳定性的影响 [J]. 金属学报, 2024, DOI: 10.11900/0412.1961.2024.00052
|
81 |
Wu Y C, Hou Q Q, Luo L M, et al. Preparation of ultrafine-grained/nanostructured tungsten materials: an overview [J]. J. Alloys Compd., 2019, 779: 926
|
82 |
Zhao Z H, Yao G, Luo L M, et al. Anisotropy and stability of the mechanical properties of the W alloy plate reinforced with Y-Zr-O particles and prepared by a wet chemical method [J]. Int. J. Refract. Met. Hard Mater., 2021, 99: 105597
|
83 |
Wang M M, Xie Z M, Deng H W, et al. Thermal shock fatigue behaviors of various W-0.5 wt%ZrC materials under repetitive transient heat loads [J]. J. Nucl. Mater., 2020, 534: 152152
|
84 |
Feng F, Lian Y Y, Liu X, et al. Transient thermal shock performance of sintered W-TaC by SPS [J]. Rare Met. Mater. Eng., 2017, 46: 3544
|
84 |
封 范, 练友运, 刘 翔 等. SPS烧结W-TaC的耐瞬态热冲击性能 [J]. 稀有金属材料与工程, 2017, 46: 3544
|
85 |
Feng F, Lian Y Y, Wang J B, et al. Mechanical properties and thermal shock performance of high-energy-rate-forged W-1%TaC alloy [J]. Crystals, 2022, 12: 1047
|
86 |
Tejado E, Martin A, Pastor J Y. Effect of Ti and TiC alloyants on the mechanical properties of W-based armour materials [J]. J. Nucl. Mater., 2019, 514: 238
doi: 10.1016/j.jnucmat.2018.12.001
|
87 |
Tan X Y, Li P, Luo L M, et al. Effect of second-phase particles on the properties of W-based materials under high-heat loading [J]. Nucl. Mater. Energy, 2016, 9: 399
|
88 |
Yao G, Tan X Y, Luo L M, et al. Surface damage evolution during transient thermal shock of W-2 vol%Y2O3 composite material in different surfaces [J]. Fusion Eng. Des., 2019, 139: 86
|
89 |
Shen T L, Dai Y, Lee Y. Microstructure and tensile properties of tungsten at elevated temperatures [J]. J. Nucl. Mater., 2016, 468: 348
|
90 |
Yao G, Zhao Z H, Luo L M, et al. Damage evolutions of completely recrystallized W-Y2O3 composite evaluated using the dual effects of electron beam thermal shock and helium ion irradiation [J]. Mater. Chem. Phys., 2021, 271: 124947
|
91 |
Lv Y Q, Han Y, Zhao S Q, et al. Nano-in-situ-composite ultrafine-grained W-Y2O3 materials: Microstructure, mechanical properties and high heat load performances [J]. J. Alloys Compd., 2021, 855: 157366
|
92 |
Lv Y Q, Fan Y, Zhao S Q, et al. The microstructure evolution, damage behavior and failure analysis of fine-grained W-Y2O3 composites under high transient thermal shock [J]. Int. J. Refract. Met. Hard Mater., 2022, 107: 105905
|
93 |
Chen Z, Yang J J, Zhang L, et al. Effect of La2O3 content on the densification, microstructure and mechanical property of W-La2O3 alloy via pressureless sintering [J]. Mater. Charact., 2021, 175: 111092
|
94 |
Nogami S, Hasegawa A, Fukuda M, et al. Mechanical properties of tungsten: Recent research on modified tungsten materials in Japan [J]. J. Nucl. Mater., 2021, 543: 152506
|
95 |
Zhang X X, Yan Q Z, Yang C T, et al. Microstructure, mechanical properties and bonding characteristic of deformed tungsten [J]. Int. J. Refract. Met. Hard Mater., 2014, 43: 302
|
96 |
Shirokova V, Laas T, Ainsaar A, et al. Comparison of damages in tungsten and tungsten doped with lanthanum-oxide exposed to dense deuterium plasma shots [J]. J. Nucl. Mater., 2013, 435: 181
|
97 |
Zhang X X, Yan Q Z. Morphology evolution of La2O3 and crack characteristic in W-La2O3 alloy under transient heat loading [J]. J. Nucl. Mater., 2014, 451: 283
|
98 |
Gaudio P, Montanari R, Pakhomova E, et al. W-1%La2O3 submitted to a single laser pulse: effect of particles on heat transfer and surface morphology [J]. Metals, 2018, 8: 389
|
99 |
Chen Z, Qin M L, Yang J J, et al. Thermal stability and grain growth kinetics of ultrafine-grained W with various amount of La2O3 addition [J]. Metall. Mater. Trans., 2020, 51A: 4113
|
100 |
Kanpara S, Khirwadkar S, Belsare S, et al. Fabrication of tungsten & tungsten alloy and its high heat load testing for fusion applications [J]. Mater. Today: Proc., 2016, 3: 3055
|
101 |
Zhao M Y, Zhou Z J, Zhong M, et al. Thermal shock behavior of fine grained W-Y2O3 materials fabricated via two different manufacturing technologies [J]. J. Nucl. Mater., 2016, 470: 236
|
102 |
Zhou Z J, Tan J, Qu D D, et al. Basic characterization of oxide dispersion strengthened fine-grained tungsten based materials fabricated by mechanical alloying and spark plasma sintering [J]. J. Nucl. Mater., 2012, 431: 202
|
103 |
Yao G, Chen H Y, Luo L M, et al. Enhanced thermal-mechanical properties of rolled tungsten bulk material reinforced by in situ nanosized Y-Zr-O particles [J]. Nucl. Eng. Technol., 2024, 56: 2141
|
104 |
Dong Z, Ma Z Q, Liu Y C. Accelerated sintering of high-performance oxide dispersion strengthened alloy at low temperature [J]. Acta Mater., 2021, 220: 117309
|
105 |
Liu Z, Yan S, Luo L M, et al. Effect of Hf content on microstructure and properties of ultrafine W-Y2O3 composites prepared by wet chemical method [J]. Chin. J. Nonferrous Met., 2024, 34: 125
|
105 |
刘 祯, 颜 硕, 罗来马 等. Hf含量对湿化学法制备超细W-Y2O3复合材料显微组织与性能的影响 [J]. 中国有色金属学报, 2024, 34: 125
|
106 |
Zhang X X, Gong Z, Huang J J, et al. Thermal shock resistance of tungsten with various deformation degrees under transient high heat flux [J]. Mater. Res. Express, 2020, 7: 066503
|
107 |
Xie Z M, Miao S, Zhang T, et al. Recrystallization behavior and thermal shock resistance of the W-1.0 wt%TaC alloy [J]. J. Nucl. Mater., 2018, 501: 282
|
108 |
Liu X, Lian Y Y, Chen L, et al. Experimental and numerical simulations of ELM-like transient damage behaviors to different grade tungsten and tungsten alloys [J]. J. Nucl. Mater., 2015, 463: 166
|
109 |
He C Y, Feng F, Wang J B, et al. Improving the mechanical properties and thermal shock resistance of W-Y2O3 composites by two-step high-energy-rate forging [J]. Int. J. Refract. Met. Hard Mater., 2022, 107: 105883
|
110 |
Chen L Q, Huang B, Yang X L, et al. High thermal shock resistance realized by Ti/TiH2 doped tungsten-potassium alloys [J]. J. Alloys Compd., 2019, 780: 388
|
111 |
Lian Y Y, liu X, Cheng Z K, et al. Thermal shock performance of CVD tungsten coating at elevated temperatures [J]. J. Nucl. Mater., 2014, 455: 371
|
112 |
Zhang X X, Yan Q Z. The thermal crack characteristics of rolled tungsten in different orientations [J]. J. Nucl. Mater., 2014, 444: 428
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|