金属学报, 2025, 61(4): 653-664 DOI: 10.11900/0412.1961.2023.00053

研究论文

中碳Nb合金化钢液析碳化物的析出行为

梁炫1,2, 侯廷平,1,2, 张东1,2, 谭昕暘1,2, 吴开明,1,2

1 武汉科技大学 省部共建耐火材料与冶金国家重点实验室 武汉 430081

2 武汉科技大学 高性能钢铁材料及其应用省部共建协同创新中心 武汉 430081

Precipitation Behavior of Primary Carbides in Medium Carbon Nb-Alloyed Steel

LIANG Xuan1,2, HOU Tingping,1,2, ZHANG Dong1,2, TAN Xinyang1,2, WU Kaiming,1,2

1 State Key Laboratory of Refractories and Metallury, Wuhan University of Science and Technology, Wuhan 430081, China

2 Hubei Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China

通讯作者: 侯廷平,houtingping@wust.edu.cn,主要从事金属材料相变研究;吴开明,wukaiming@wust.edu.cn,主要从事高性能钢铁材料相变及应用性能的研究

责任编辑: 李海兰

收稿日期: 2023-02-13   修回日期: 2023-04-18  

基金资助: 国家自然科学基金项目(12174296, U1532268, U20A20279)
湖北省重点研发计划项目(2021BAA057)
湖北省高等学校优秀中青年科技创新团队项目(T201903)
浙江省领军型创新创业团队项目(2021R01020)

Corresponding authors: HOU Tingping, professor, Tel:18140522212, E-mail:houtingping@wust.edu.cn;WU Kaiming, professor, Tel: 13100610041, E-mail:wukaiming@wust.edu.cn

Received: 2023-02-13   Revised: 2023-04-18  

Fund supported: National Natural Science Foundation of China(12174296, U1532268, U20A20279)
Key Research and Development Program of Hubei Province(2021BAA057)
Excellent Young and Middle-aged Science and Technology Innovation Team in Colleges, Universities of Hubei Province(T201903)
Zhejiang Provincial Leading Innovation and Entrepreneurship Team(2021R01020)

作者简介 About authors

梁 炫,女,1978年生,博士

摘要

液析碳化物严重影响钢的力学性能。本工作利用SEM、TEM等手段表征和分析了液析碳化物的形貌及元素分布,研究Nb含量对中碳Nb合金化钢液析碳化物的影响。基于密度泛函理论的第一性原理与准谐Debye模型相结合的方法,分析了不同温度下NbC与晶格振动、电子相关的热力学参数演变规律。建立了耦合凝固相变的微观偏析模型,定量分析了凝固相变和Nb含量对溶质元素偏析的影响。结果表明,随着Nb含量的增加,液析碳化物的形貌由球形向多面体转变,带状分布趋势加强。不同温度下NbC中电子导致的自由能改变量增加被晶格振动导致的自由能改变量减小所补偿,总Gibbs自由能改变量为负,证实了NbC的热力学稳定性。凝固过程中L + δ向L + γ转变,降低了溶质元素C的偏析程度,增加了Nb元素的偏析程度。Nb含量的增加促使NbC在更低的固相分数时开始析出。

关键词: 铌合金钢; 液析碳化物; 热力学机制; 第一性原理; 微观偏析; 凝固相变

Abstract

High-performance steels containing niobium have widespread use in high-end manufacturing sectors such as aerospace, automotive, energy, and construction engineering. Due to its capacity as a strong carbide-forming element, Nb favors the formation of NbC. These carbides, dispersed within the matrix, significantly contribute to precipitation strengthening, precipitation hardening, and grain refinement. In addition, Nb serves as a positive segregation element. When steel solidifies from its molten state, Nb segregates in the liquid phase and forms primary NbC carbides. These carbides significantly affect the mechanical properties of steel. Herein, to investigate the effect of Nb content on primary carbides in medium-carbon Nb-alloyed steel, the microstructure including the morphology, size, and distribution of niobium and carbon was characterized through SEM and TEM. To further understand the role of lattice vibrations and electrons at different temperatures, the first principle calculations with quasi-harmonic Debye model were combined to study the evolution of thermodynamic parameters. Primary carbides form because of solute segregation at the solid-liquid interface. For a more detailed investigation, a solute microsegregation model coupled with solidification phase transition was developed. This model was adopted to quantitatively analyze the effects of solidification phase transition and Nb content on solute microsegregation. The experiments yielded the following results: with increasing Nb content, the morphology of primary carbides shifted from spherical to polyhedral geometry. Furthermore, a distinct zonal distribution of primary carbides was observed. The laws of thermodynamics indicate that the increase in free energy change due to electrons at different temperatures is compensated by the decrease in free energy change arising from lattice vibrations, indicating the key role of lattice vibrations in maintaining the stability of NbC. The Gibbs free energy change at different temperatures was negative, indicating the thermostatic stability of NbC. Furthermore, the absence of imaginary frequency in the phonon spectrum indicates the dynamic stability of NbC. From a microsegregation viewpoint, the mass fraction of solute carbon decreases while that of the solute Nb increases at the solidification front during the phase transition from L + δ to L + γ. As the Nb content increases, the solid fraction of the solidification phase transition increases. Increased Nb content promotes the precipitation of primary carbides at low solid fractions.

Keywords: Nb-alloyed steel; primary carbide; thermodynamic mechanism; first principle calculation; microsegregation; solidification phase transition

PDF (3223KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

梁炫, 侯廷平, 张东, 谭昕暘, 吴开明. 中碳Nb合金化钢液析碳化物的析出行为[J]. 金属学报, 2025, 61(4): 653-664 DOI:10.11900/0412.1961.2023.00053

LIANG Xuan, HOU Tingping, ZHANG Dong, TAN Xinyang, WU Kaiming. Precipitation Behavior of Primary Carbides in Medium Carbon Nb-Alloyed Steel[J]. Acta Metallurgica Sinica, 2025, 61(4): 653-664 DOI:10.11900/0412.1961.2023.00053

作为一种天然存在的金属元素,Nb具有一定的延展性、可塑性和高度耐腐蚀性。含Nb高性能钢被广泛地应用于航空航天、汽车与交通、能源及建筑工程等高端制造领域[1~3],钢中Nb元素以固溶体和沉淀形式存在[4~6]。固溶Nb能阻止奥氏体晶粒的长大,抑制形变奥氏体发生再结晶。作为一种强碳化物形成元素,Nb易生成碳化物,弥散分布在基体中,起到相变强化、沉淀硬化和晶粒细化等重要作用。Nb元素的平衡分配系数小于1,属于正偏析元素,在钢液凝固过程中偏聚于液相,与偏聚的C元素生成液析碳化物[7]。这类碳化物的热稳定性高,在均匀退火及热处理过程中不能完全消除[8],在再加热过程中无法起到钉扎奥氏体晶界、阻止奥氏体晶粒长大的作用。液析碳化物影响了Nb元素在基体中的固溶效果,对后续淬火/回火过程中细小二次碳化物的析出不利。液析碳化物的存在破坏了钢基体的连续性,降低了材料的强度和韧性。在外力作用下,液析碳化物会成为裂纹源,降低钢的使用寿命[9,10]。为了改善液析碳化物,研究铌合金钢凝固过程中的析出特性和微观偏析是非常有必要的。

研究者们基于密度泛函理论的第一性原理从原子尺度对析出行为进行了广泛的研究,将0 K、0 Pa下的形成能作为判断析出物热力学稳定性的依据[11,12],分析析出物的析出顺序[12]。但是析出物的实际生成并不在0 K条件下,因此有必要研究温度对Gibbs自由能改变量(ΔG)的影响[13],综合考虑基态能量(热力学温度T = 0 K)、晶格振动、电子和磁性对自由能的贡献。Klymko和Sluiter[14]采用第一性原理与简谐近似相结合的方法研究了不同温度下形成NbC时自由能的改变,简谐近似利用平衡体积下的声子谱得到振动自由能随温度的变化,忽略了体积对温度的依赖,这将影响振动自由能的准确性[15]。目前,基于密度泛函理论的第一性原理与准谐Debye模型相结合的方法是计算晶格振动自由能的有效手段之一[16]

在钢液凝固过程中,溶质元素在固/液相之间重新分配,产生偏析。常见的微观偏析理论模型有Level rule模型[17]、Scheil模型[18]、Brody-Fleming模型[19]、Ohnaka模型[20]、Clyne-Kurz模型[21]和Voller-Beckermann模型[22,23]等。平衡凝固条件下固相中溶质质量分数与液相中溶质质量分数的比值称为溶质平衡分配系数(k),该参数决定了凝固过程中溶质元素在固/液相间的再分配,是微观偏析模型中的重要参数。这些理论模型只考虑了液相与一种固相的转变,因此将溶质平衡分配系数视作一个常数,且只考虑了溶质元素在单一固相中的扩散。凝固过程中的相变受到钢原始成分的影响,相变路径不单一,因此为了提高模型预测的准确度,对微观偏析模型的修正具有现实意义。

本工作以中碳Nb合金化钢为研究对象,分析Nb含量对液析碳化物NbC形貌和分布特征的影响。将基于密度泛函理论的第一性原理与准谐Debye模型相结合,定量分析析出NbC的ΔG随温度的变化,对比晶格振动和电子对ΔG的贡献。并建立了耦合凝固相变的微观偏析模型,分析凝固过程中的L + δ→L + γ相变对中碳Nb合金化钢溶质元素偏析的影响,研究凝固过程中Nb含量对δ/γ相变点以及液析碳化物NbC析出行为的影响。本工作旨在为理解高温下初生NbC碳化物的沉淀行为提供坚实的理论基础。

1 实验方法

1.1 实验材料

本实验设计了4种Nb含量的中碳钢,其化学成分如表1所示。成分设计的原则是保证C和Mn的含量相同,改变Nb含量,4种钢分别命名为0.1Nb、0.6Nb、1.1Nb和1.6Nb。实验材料以高纯金属和电解铁为原材料,经真空冶炼后浇铸为钢锭,将钢锭在1200~1250 ℃保温一段时间后轧制成尺寸为170 mm × 20 mm的热轧板材。利用线切割从板材上切下尺寸为20 mm × 20 mm × 120 mm的试样,并密封于耐高温的真空石英管内,将石英管置于高温热处理加热炉中随炉升温至1200 ℃并保温48 h,进行均匀化退火。将均匀化后的样品加工成直径6 mm、长70 mm的试样,在Gleeble 3800热模拟试验机上以10 ℃/s的加热速率升温到1250 ℃,保温300 s,再以0.1 ℃/s冷速冷却至室温。然后将试样切割、镶样,经磨抛后用4% (体积分数)硝酸酒精溶液腐蚀,采用MERLIN Compact扫描电镜(SEM)观察液析碳化物的形貌及分布。从样品横截面截取透射电镜(TEM)试样,采用Talos F200X TEM观察析出物形貌,通过附带的能谱仪(EDS)面扫功能得到析出物的元素分布情况。

表1   实验用钢的化学成分 (mass fraction / %)

Table 1  Chemical compositions of the tested steels

SampleCMnNbPSFe
0.1Nb0.22.00.1< 0.005< 0.005Bal.
0.6Nb0.22.00.6< 0.005< 0.005Bal.
1.1Nb0.22.01.1< 0.005< 0.005Bal.
1.6Nb0.22.01.6< 0.005< 0.005Bal.

新窗口打开| 下载CSV


1.2 第一性原理与准谐Debye模型的结合

1.2.1 理论方法体系

Gibbs自由能改变量用于评估化合物AmBn (mn分别是AB原子的个数)的热力学稳定性。ΔG为负值代表化合物的形成会释放能量,AmBn 为稳定相;ΔG为正值代表化合物的形成会吸收能量,AmBn 为非稳定相。ΔG的计算公式如下:

ΔG(T, V)=[GAmBn(T, V)-mGA(T, V)-nGB(T, V)]
(1)

式中,GAmBn(T, V)AmBn 的Gibbs自由能,GA(T, V)和GB(T, V)分别是固态AB单个原子的Gibbs自由能,TV分别为温度和体积。

晶格振动、热电子激发和系统磁性都会对Gibbs自由能作出贡献[24],本工作的对象是无磁性的,因此只需考虑晶格振动和电子对Gibbs自由能的影响:

G(T, V)=E0+Gvib(T)+Gel(T)+PV
(2)

式中,E0T = 0 K、压力P = 0 Pa下基态能量,可由第一性原理得到;Gvib(T)为晶格振动自由能,将第一性原理与准谐Debye模型[25,26]相结合计算晶格振动自由能;Gel(T)为电子自由能,根据Sommerfeld近似[27],电子自由能与Fermi面的电子态密度有关。

联立 式(1)和(2)可得总Gibbs自由能改变量的表达式为(本工作中P = 0 Pa):

ΔG(T)=(E0AmBn-mE0A-nE0B)+                     
(GvibAmBn-mGvibA-nGvibB)+
(GelAmBn-mGelA-nGelB)=  
     ΔE0+ΔGvib(T)+ΔGel(T)
(3)

式中,ΔE0是0 K时的形成能;ΔGvib(T)和ΔGel(T)分别为不同温度下晶格振动和电子引起的自由能的改变量,体现了晶格振动和电子对体系总能量变化的贡献。

1.2.2 计算细节和晶体结构

基态能量以及电子结构采用基于第一性原理密度泛函理论的Vienna ab initio simulation package (VASP)软件包计算[28]。分别采用投影缀加平面波和广义梯度近似(GGA)的Perdew-Burke-Ernzerhof泛函[29]来描述电子与离子实的相互作用和交换关联相互作用。选取Nb_pv作为Nb原子的赝势,标准赝势作为C原子的赝势。Nb和C的价电子分别为4s24p64d45s1和2s22p2。结构充分弛豫,每个原子的受力小于0.2 eV/nm,能量收敛精度为10-5 eV。利用VASP软件包中密度泛函微扰理论(DFPT)得到原子的实空间力常数,然后用PHONOPY程序包[30]处理力常数获得声子谱,NbC声子谱计算采用2 × 2 × 2的超胞。

NbC属于NaCl型立方晶系,晶胞结构示意图如图1a所示。每个Nb原子周围有6个C原子,组成八面体结构,八面体通过边缘连接在一起。NbC的晶胞有8个原子,其中4个Nb原子位于4a位置,4个C原子位于4c位置,Nb原子位于面心立方亚晶格,C原子占据间隙位置,空间群属Fm3¯m。Nb属于bcc结构,空间群属Im3¯m,其晶胞共2个原子,晶胞结构如图1b所示。C (石墨)属于六方晶系,其晶胞共4个原子,结构如图1c所示,空间群属P63/mmc

图1

图1   NbC、Nb和C的晶体结构

Fig.1   Crystal structures of NbC (a), Nb (b), and C (c)


1.3 微观偏析模型与凝固相变的耦合

在钢液凝固过程中,糊状区内溶质元素在固/液两相的热力学平衡溶解度的差异导致了凝固前沿溶质元素的微观偏析。Voller-Beckermann微观偏析模型[22,23]将溶质偏析行为描述为:

w(i)L, fs=w(i)L, 0[1+(βiki-1)fs](ki-1)/(1-βiki)
(4)

式中,w(i)L, fs为溶质元素i在固/液界面前沿液相中的质量分数,%;w(i)L, 0为开始凝固时液相中溶质元素i的质量分数,%;ki 为溶质元素i的平衡分配系数;fs为固相分数;βi 为溶质元素i的反向扩散系数:

βi=2(αi+0.1)[1-exp(-1αi+0.1)]-
exp-12(αi+0.1)                   
(5)
αi=4Ds, itλSDAS2
(6)

式中,t为局部凝固时间,t=TL-TSRC,s (RC为凝固时的冷却速率,K/s;TLTS分别为液相线和固相线温度[31],K);λSDAS为凝固组织中二次枝晶的枝晶间距,μm;Ds, i 为溶质元素i在固相中的扩散系数,cm2/s,Ds, i 与温度有关:

Ds, i=D0, iexp(-QiRT)
(7)

式中,D0, i 为溶质元素i的扩散常数,cm2/s;Qi 为溶质元素i的扩散激活能,J/mol;R为气体常数。材料中的C含量w(C) (质量分数,%)和凝固时的冷却速率都会影响二次枝晶间距。Won和Thomas[32]根据已有的实验数据进行拟合回归分析得到:

λSDAS=[169.1-720.9w(C)]RC-0.4935(0<w(C)0.15)143.9RC-0.3616w(C)0.5501-1.966w(C)(w(C)>0.15)

在不同的固/液界面,溶质元素的再分配是不一样的,在不同的固相中溶质元素的扩散行为也不相同,因此作为合金凝固行为重要组成部分的凝固相变,与溶质元素的微观偏析密切相关。在分析溶质微观偏析时,需要考虑溶质元素的平衡分配系数和扩散随相变的变化。表2[33]给出了溶质元素在不同固/液界面的平衡分配系数以及溶质元素在不同固相的扩散常数和扩散激活能。

表2   溶质元素的扩散常数、扩散激活能和平衡分配系数[33]

Table 2  Diffusion constants, diffusion activation energies, and equilibrium partition coefficients of solute elements[33]

ElementD0δQδD0γQγkδ/Lkγ/L
C0.012781370.800.0761134557.440.190.340
Nb50.2000251960.480.8300266478.960.400.220
Mn0.7600224429.760.0550249366.400.760.780

Note:D0δ and D0γ are the solute diffusion constants in the δ and γ phases of steel, respectively; Qδ and Qγ are the solute diffusion activation energies in the δ and γ phases of steel, respectively; kδ/L and kγ/L are the equilibrium partition coefficients between δ phase and liquid phase (L) or between γ phase and liquid phase, respectively

新窗口打开| 下载CSV


2 结果与分析

2.1 实验结果

图2是实验用钢显微组织的SEM像,箭头所指为液析碳化物。随着Nb含量的增加,液析碳化物形貌逐渐由球形向多面体转变,而且带状分布趋势逐渐明显。Chen和Wang[34]理论预测结果表明,凝固过程中球状晶体界面的稳定性随溶质浓度的增加先降低后增加,与本工作的实验现象比较吻合。当Nb含量为0.1%时,视场内有极少量尺寸为500 nm左右的液析碳化物;当Nb含量为1.6%时,液析碳化物的平均尺寸可达1.7 μm。图3为钢中液析碳化物的TEM像和EDS面扫分析结果。碳化物主要聚集了Nb和C 2种元素,由此判断碳化物为NbC。

图2

图2   不同Nb含量钢的SEM像

Fig.2   SEM images of steels with different Nb contents

(a) 0.1Nb (b) 0.6Nb (c) 1.1Nb (d) 1.6Nb


图3

图3   碳化物的TEM明场像及Nb、C元素分布图

Fig.3   Bright-field TEM image of the carbide (a) and element distributions of Nb (b) and C (c)


2.2 第一性原理结合准谐Debye模型的结果与分析

2.2.1 基态性质

表3列出了NbC、Nb和C优化后的晶格常数、晶胞角度以及0 K、0 Pa下的形成能。计算结果与文献中的实验值[35,36]和0 K、0 Pa下的理论值[14,37,38]吻合较好,相对误差在1.2%以内,说明了本工作计算方法的准确性。

表3   NbC、Nb和C在0 K、0 Pa结构优化后的晶格常数、晶胞角度和形成能

Table 3  Optimized lattice constants, cell angles and formation energy of NbC, Nb, and C at 0 K, 0 Pa

SpeciesLattice constantCell angle / (o)

Formation energy

kJ·mol-1

10-1 nmαβγ
NbCa = b = c = 4.505909090-101.12
4.47[35], 4.471[36], 4.45[37]-104.3[14], -121.58[38]
Nba = b = c = 3.322909090-
Ca = 2.466, b = 2.466, c = 8.2619090120-

新窗口打开| 下载CSV


2.2.2 声子谱和声子态密度

振动声子谱可用于判断体系的动力学稳定性。图4a给出了NbC的声子谱。在第一Brillion区中声子谱没有虚频,意味着NbC是动力学稳定的。

图4

图4   NbC的声子谱及声子态密度

Fig.4   Calculated phonon dispersion spectra (a) and total or partial density of states (TDOS, PDOS) (b) for NbC


图4b给出了NbC的声子总态密度(TDOS)和各原子的分波态密度(PDOS)。在声子频率7.5~15 THz之间声子态密度出现了带隙,带隙以右的声子态密度主要来源于C原子振动,带隙以左主要来源于Nb原子。这是由于C原子比Nb原子轻造成的,轻原子支配高频声子即光学声子,重原子支配低频声子即声学声子[39]

2.2.3 电子结构

Fermi能级附近的自由电子会参与热激发,从而产生电子自由能。因此需要分析NbC、Nb和C的电子结构。本工作计算了NbC的电子TDOS和PDOS,以及Nb和C的TDOS,结果如图5所示。

图5

图5   NbC的电子总态密度和分态密度,及Nb、C的总态密度

Fig.5   TDOS and PDOS for NbC (a), and TDOS for Nb (b) and C (c)


图5中0 eV处垂直的虚线是Fermi面。在Fermi面NbC和Nb的TDOS不为零,C的TDOS为零,因此NbC和Nb的电子对自由能的贡献需要考虑,C的电子自由能可以忽略。NbC的TDOS值穿过Fermi面,说明NbC呈金属性。在Fermi面附近,NbC的TDOS主要来源于Nb-4d轨道和C-2p轨道。在-4.5 eV附近Nb-4d轨道和C-2p轨道存在明显的共振,说明在该价带区域Nb和C形成了d-p杂化轨道,Nb和C原子之间存在共价键。

2.2.4 晶格振动和电子对NbC自由能的热力学影响机制

Gibbs自由能中与温度相关的部分为:振动自由能和电子自由能(式(2))。NbC的振动自由能和电子自由能如图6所示。T = 0 K时NbC的振动自由能为13.2 kJ/mol。随着温度的升高,振动自由能逐渐降低。当温度超过520 K时,振动自由能由正值转为负值。根据Sommerfeld近似[27]以及Fermi面处NbC的态密度(图5)可知,T = 0 K时NbC的电子自由能为零,温度的升高使电子自由能逐渐降低。通过对比可知,晶格振动对不同温度下的自由能起主导作用,电子对自由能的贡献随着温度的升高而增加。

图6

图6   NbC的振动自由能和电子自由能随温度的变化

Fig.6   Calculated Gibbs free energies including the lattice vibrational and electronic contributions (Gvib, Gel) as a function of temperature for NbC


图7a给出了不同温度下晶格振动和电子引起的ΔGvib和ΔGel。ΔGrib为负值,对NbC的稳定性做出了贡献。由图5可知Fermi面处NbC与Nb和C的TDOS之间的差值为-1.1 states/eV。根据Sommerfeld近似[27]式(3)可得,ΔGel(T) = 1.3 × 10-6T2 kJ/mol,ΔGel(T)为正值。但是,ΔGvib(T)减小补偿了ΔGel(T)增加,总ΔG(T)为负(图7b),说明不同温度下NbC是热力学稳定相。

图7

图7   晶格振动和电子引起的自由能改变量及NbC总Gibbs自由能改变量随温度的变化

Fig.7   Change in Gibbs free energies related to lattice vibrations and electrons (ΔGvibGel) (a) and dependence of change in total Gibbs free energy on temperature for NbC (ΔG) (b)


2.3 平衡态凝固时液析碳化物NbC的析出行为

利用Thermo-Calc软件的TCFE12数据库,分析了Nb含量对中碳钢平衡凝固相变的影响,结果如图8所示。

图8

图8   凝固过程Thermo-Calc热力学计算Nb含量对相变的影响

Fig.8   Effect of Nb content on phase transformation during solidification process by Thermo-Calc calculation

(a) 0.1Nb (b) 0.6Nb (c) 1.1Nb (d) 1.6Nb


平衡态下,4种钢在钢液中都没有碳化物生成。温度降低,钢液开始凝固。当Nb含量为0.1%时,平衡凝固相变为L→L + δ→L + δ + γ→L + γγ。随着温度降低,δ铁素体首先从液相中析出,出现L和δ两相共存(L→L + δ);当温度降至包晶反应温度时,δ铁素体和残余液相发生包晶反应,生成奥氏体γ,出现L、δγ三相共存(L + δ→L + δ + γ);δ铁素体的消失代表包晶反应结束,出现L与γ两相共存(L + δ + γ→L + γ);最终残余液相全部凝固为奥氏体γ (L + γγ)。当Nb含量大于0.1%时,平衡凝固相变的路径为L→L + δ→L + δ + γ→L + γ→L + γ + NbC→γ + NbC,在糊状区发生了L→γ + NbC共晶反应,NbC与奥氏体共同结晶,液析碳化物生成。

表4列出了平衡态凝固时三相共存(L + δ + γ)的温度区间(ΔTL + δ + γ )以及液析碳化物开始生成的温度(Tstart)。随着Nb含量的增加,三相共存(L + δ + γ)的温度区间由0.6 K增至7 K。当Nb含量为0.1%时平衡凝固过程中没有液析碳化物,Nb含量的增加导致液析碳化物在平衡凝固过程中生成,液析碳化物开始析出的温度受Nb含量的影响不大。

表4   不同Nb含量中碳钢的三相共存温度区间(ΔTL + δ + γ )和碳化物析出温度(Tstart) (K)

Table 4  Temperature ranges of three-phase coexistence (ΔTL + δ + γ ) and carbides precipitation temperature (Tstart) for medium carbon steels with different Nb contents

SampleΔTL + δ + γTstart
0.1Nb0.6-
0.6Nb31724.6
1.1Nb51725.5
1.6Nb71724.7

新窗口打开| 下载CSV


需要指出的是,凝固过程中会发生溶质元素再分配,所以需要考虑非平衡态凝固时溶质元素的偏析对液析碳化物的影响。溶质微观偏析模型中,一个重要参数是溶质平衡分配系数,两相共存区的平衡分配系数kδ/Lkγ/L表2中已给出,三相共存区(L + δ + γ)的平衡分配系数kδ+γ/L可表示为[40]

kδ+γ/L=wδkδ/L+wγkγ/L
(9)

式中,wδwγ 分别是三相共存时δ相和γ相在固相中的质量分数。图9给出了1.6Nb钢在两相共存区和三相共存区的平衡分配系数随温度的变化。可见kδ+γ/L与温度呈线性关系。由表4可知,三相共存的温度区间随着Nb含量的降低而变窄,kδ+γ/L对应的斜直线向垂线趋近。表4还显示0.1Nb钢在凝固过程中没有碳化物析出,其他3种钢在凝固末期析出碳化物。因此本工作在下文的非平衡态凝固计算中不考虑包晶反应和共晶反应,实验用钢的凝固相变简化为:L→L + δ→L + γγ

图9

图9   1.6Nb钢的溶质平衡分配系数随温度的变化

Fig.9   Variation of solute equilibrium partition coeffici-ents kC (a) and kNb (b) with temperature for 1.6Nb steel


2.4 非平衡态凝固时液析碳化物NbC的析出行为

2.4.1 凝固相变对溶质元素微观偏析的影响

为了分析凝固相变对实验用钢溶质元素微观偏析的影响,分别采用Voller-Beckermann模型[22,23]和耦合凝固相变的Voller-Beckermann模型计算了0.1Nb钢中溶质元素C和Nb的偏析(图10)。当fs = 0.595 (T = 1764.9K)时,0.1Nb钢发生L + δ→L + γ相变。

图10

图10   L + δ→L + γ相变对0.1Nb钢溶质偏析的影响

Fig.10   Effects of phase transition on solute segregation in 0.1Nb steel (fs is the solid phase volume fraction, w(C)L, fs and w(Nb)L, fs are the concentrations of C and Nb in the residual liquid of steel, respectively)

(a) C (b) Nb


不考虑L + δ→L + γ相变,在整个凝固过程中溶质元素C和Nb在凝固前沿液相中的质量分数随固相分数的增加而增加。相变的发生引起溶质元素平衡分配系数和扩散系数的改变,导致溶质元素C的质量分数在相变点急剧降低(图10a),溶质Nb的质量分数在相变点升高(图10b)。随后,溶质元素C和Nb的质量分数继续随着固相分数的增加而增加。因此,将凝固相变与微观偏析模型耦合,对准确预测溶质元素在凝固前沿液相中的偏析非常必要。

2.4.2 Nb含量对溶质元素微观偏析的影响

凝固前沿的液相中,4种钢溶质元素的偏析比随fs的变化如图11所示。凝固相变发生后,因C元素在γ相的溶解度高于在δ相的溶解度,C的偏析比在相变点处降低;Nb元素在γ相的溶解度低于在δ相的溶解度,所以Nb的偏析比在相变点处升高。

图11

图11   Nb含量对溶质元素偏析比的影响

Fig.11   Effects of Nb content on segregation ratios of C (a) and Nb (b) (fsδ/γ is the solid fraction of NbC carbide when L + δ→L + γ phase transition occurs, w(M)L, 0 (M = C, Nb) is the initial mass fraction of M in liquid phase. Different colors of fs represent different steels)


Nb含量不同导致凝固相变点不同。当Nb含量由0.1%增至0.6%、1.1%、1.6%时,L + δ→L + γ相变发生时的固相分数(fsδ/γ)分别是0.595、0.689、0.781和0.869。由图11a和b可知,当fs处在2种钢的fsδ/γ之间时,Nb含量对溶质元素C、Nb的偏析比影响较大,Nb含量高的钢中溶质C的偏析比高、溶质Nb的偏析比低。当fs处于其他区间时,Nb含量对溶质元素C、Nb的偏析比影响不大,不同Nb含量钢中相同溶质元素的偏析比非常接近。

2.4.3 Nb含量对液析碳化物NbC析出的影响

凝固过程中,溶质元素在液相和固相中的溶解度不同,当k < 1时溶质元素逐渐从固相排出到固/液界面,导致凝固前沿溶质元素的富集。图12给出了冷速为10 ℃/s时,根据耦合凝固相变的Voller-Beckermann模型[22,23]得到的4种钢中Nb和C的实际固溶度积随fs的变化情况。当fs = 0.9时,0.1Nb、0.6Nb、1.1Nb和1.6Nb钢凝固前沿钢液中Nb和C的实际浓度积分别为0.25 × 10-4、1.49 × 10-4、2.74 × 10-4和3.99 × 10-4,远高于其初始浓度积0.02 × 10-4、0.06 × 10-4、0.22 × 10-4和0.32 × 10-4图12中的右坐标轴是不同fs下凝固前沿液相的温度[41]fs随着温度降低而增加。利用文献[42]中Nb和C的平衡浓度积公式并综合考虑溶质元素之间的相互作用,得到固/液界面液相中Nb和C的平衡浓度积w(Nb)L, fseqwCL, fseq (其中,w(Nb)L, fseqw(C)L, fseq分别为fs下NbC析出后溶质Nb和C的平衡浓度) (图12)。

图12

图12   4种实验用钢凝固前沿实际浓度积和平衡浓度积

Fig.12   Curves of actual solubility product and equilibrium solubility product at solidification front against solid fraction (The vertical coordinate on the right represents the temperature of the liquid at the solidification front under different solid fractions; fsNbC is the solid fraction of NbC carbide at the beginning stage)

(a) 0.1Nb (b) 0.6Nb (c) 1.1Nb (d) 1.6Nb


当凝固前沿液相中溶质元素Nb和C的实际浓度积超过其平衡浓度积时,就具备了NbC析出的热力学条件[43]。溶质的初始含量与凝固过程中碳化物的析出时机密切相关。由图12可知,当Nb的初始含量为0.1%时,NbC开始析出时的固相分数(fsNbC)为0.948 (温度为1727.4 K)。当Nb的初始含量分别增至0.6%、1.1%和1.6%时,fsNbC分别降为0.689、0.516和0.380,对应的温度分别为1754.8、1761.5和1763.9 K。因此钢液凝固过程中,初始Nb含量的增加导致NbC在更低的固相分数、更高的温度下析出。当4种钢的fs= fsNbC时,其溶质元素C和Nb在凝固前沿液相中的质量分数见表5。通过比较可知,在同一固相分数下,凝固前沿液相中4种钢溶质元素C的质量分数相等或相差不大,溶质元素Nb的质量分数随初始Nb含量的增加而增加,导致实际浓度积随之增加。因此,高Nb钢中溶质元素Nb和C的实际浓度积在较低的固相体积分数下就能超过其平衡浓度积,达到碳化物析出的热力学条件。

表5   fs=fsNbC时溶质元素C和Nb在凝固前沿液相中的质量分数 (%)

Table 5  Mass fractions of solute elements C and Nb in liquid at solidification front when fs=fsNbC

fsw(C)L, fsw(Nb)L, fs
0.1Nb0.6Nb1.1Nb1.6Nb0.1Nb0.6Nb1.1Nb1.6Nb
0.3800.2890.2890.2890.2890.1300.7801.4322.084
0.5160.3440.3440.3440.3440.1460.8791.612-
0.6890.3690.3690.4530.4530.2401.440--
0.9480.5470.5460.5480.5490.684---

新窗口打开| 下载CSV


2.4.4 NbC析出对微观偏析的影响

NbC析出前,由微观偏析模型得到固/液界面前沿液相中溶质元素Nb和C的质量分数w(Nb)L, fsw(C)L, fs。NbC析出会消耗固/液界面前沿液相中的溶质元素,使溶质Nb和C的浓度降低为该凝固时刻NbC析出的溶质平衡浓度w(Nb)L, fseqw(C)L, fseq

由2.4.3节可知,当fs = 0.948时,0.1Nb钢中开始析出NbC。基于耦合夹杂物析出的微观偏析模型[40],可得当fs ≥ 0.948时,NbC析出后,液相中溶质元素C和Nb的质量分数降低,溶质元素在凝固前沿液相中的偏析没有抵消NbC析出的消耗(图13)。对于其他3种Nb含量钢,NbC析出必然也会降低溶质元素在凝固前沿液相中的浓度。

图13

图13   NbC析出对0.1Nb钢溶质浓度的影响

Fig.13   Effects of NbC precipitation on solute concentrations of C (a) and Nb (b) for 0.1Nb steel


3 结论

(1) 随着初始Nb含量的增加,液析碳化物NbC的形貌由球形向多面体转变,带状分布的趋势更明显。

(2) 微观偏析模型显示:凝固过程中的L + δ→L + γ相转变,导致溶质元素C的平衡分配系数升高,Nb的平衡分配系数降低,因此固/液界面液相中C的偏析降低,Nb的偏析升高。凝固过程中,较高的初始Nb含量及更低的固相分数,更有利于NbC析出。

(3) 声子谱分析表明NbC满足动力学稳定性,不会向其他相转变。

(4) 利用第一性原理和准谐Debye模型分析发现,不同温度下NbC中电子导致的自由能改变量增加被晶格振动导致的自由能改变量减小所补偿,这说明晶格振动对NbC的稳定性做出了主要贡献。并且,不同温度下NbC的总Gibbs自由能改变量为负,证实了NbC的热力学稳定性。

参考文献

Yang Y.

All-optical photodetector based on photothermal effect of MXene Nb2CT x

[D]. Tianjin: Tianjin University of Technology, 2022

[本文引用: 1]

杨 洋.

基于碳化铌光热效应的全光探测器的研究

[D]. 天津: 天津理工大学, 2022

[本文引用: 1]

Chu S J, Mao B, Hu G K.

Microstructure control and strengthening mechanism of high strength cold rolled dual phase steels for automobile applications

[J]. Acta Metall. Sin., 2022, 58: 551

DOI     

Steels have been critical in the rapid development of the global automobile industry. Among all automotive steels, dual phase (DP) steels have been extensively used as the mechanical components and outer plates in automobiles, owing to their excellent mechanical properties, desirable weldability and paintability, and low manufacturing cost. DP steels are beneficial in reducing the weight and increasing the safety of automobiles. The optimization of alloy elements and microstructure are essential for the engineering performance of DP steels. Understanding the relationship between their mechanical properties and microstructural features as well as the factors affecting the microstructure is of utmost importance. This study reviews the recent advances in the research on the microstructure evolution and mechanical properties of high strength cold-rolled DP steels for automobile applications. First, the alloy design principles and microstructure tailoring mechanism are summarized. Then, the microstructure evolution during thermal-mechanical processing, which includes rolling, intercritical annealing, subsequent cooling, and over-aging process is discussed. Thereafter, the mechanical properties and failure mechanism of DP steels as well as their relationship with the microstructural features are analyzed. Furthermore, the related challenges and future research directions are discussed and proposed, respectively.

储双杰, 毛 博, 胡广魁.

汽车用先进高强度冷轧双相钢的显微组织调控和强韧化机理

[J]. 金属学报, 2022, 58: 551

DOI     

汽车用先进高强钢支撑了现代汽车工业的飞速发展。其中双相钢以优异的力学综合性能、良好的焊接和涂装性能及较低的成本,被广泛应用于汽车结构件和车身材料中,实现有效的结构减重并提升汽车的安全性能。合金成分和组织的优化设计是获得高性能双相钢的主要手段,而明确双相钢的组织特性影响因素以及与力学性能之间的关系则是指导双相钢的合金成分和组织优化设计的必然要求。本文围绕汽车用先进高强度冷轧双相钢的显微组织和力学性能研究的最新进展,首先概述了双相钢合金成分设计的准则以及利用合金元素对显微组织进行调控的方法。然后总结了双相钢在热加工过程中的显微组织演变的规律,探讨了轧制、两相区退火、冷却过程以及过时效过程对双相钢显微组织的影响。分析了双相钢力学性能和典型的失效形式,以及与显微组织之间的关系。最后简述了目前汽车用双相钢研究还存在的科学问题和挑战,并展望了未来的研究方向和发展趋势。

Li Z Y, Li C R, Zeng Z Y, et al.

Thermodynamic study of carbide and nitride precipitation of niobium in 500 MPa high-strength anti-seismic rebars

[J]. J. Iron Steel Res., 2020, 32: 727

[本文引用: 1]

黎志英, 李长荣, 曾泽芸 .

高强抗震钢筋中铌的碳、氮化物析出热力学研究

[J]. 钢铁研究学报, 2020, 32: 727

DOI      [本文引用: 1]

连铸过程中铌的氮化物、碳化物和碳氮化物在奥氏体晶界的析出对铸坯的质量产生严重的影响。分析了500MPa级高强度抗震钢筋(HRB500E)中铌的氮化物、碳化物和碳氮化物在液相、凝固过程以及奥氏体相等不同阶段的析出热力学,计算了不同温度下NbN和NbC的平衡/实际浓度积,得到NbN和NbC在微合金钢连铸过程中的析出规律。计算结果表明:在HRB500E钢中,NbN、NbC在钢液成分均质状态和凝固过程中难以析出;在奥氏体相中,随着温度的降低,NbC、NbN及NbC0.85N0.15具备析出热力学条件,析出温度分别为1377、1229 和1378K,析出顺序依次为:NbC0.85N0.15、NbC、NbN。

Zhou J, Hu C Y, Hu F, et al.

Insight into the effect of Nb microalloying on the microstructure-property relationship of a novel wire rod

[J]. J. Mater. Res. Technol., 2022, 16: 276

DOI      [本文引用: 1]

The microstructure-property relationship of a novel wire rod was investigated after Nb microalloying. The tensile properties were significantly improved. The impact of Nb on pearlitic transformation, residual stress, residual strain, and microstructure uniformity was discussed in this paper. By changing the alloy phase diagram, Nb microalloying improved the undercooling of the pearlitic transformation, resulting in finer lamellar spacing. Residual stresses and residual strain as different kinds of deformation energy storage satisfied the water-bed effect after Nb microalloying. After hot rolling, the residual stresses of the Nb-bearing wire rod were reduced while the residual strains increased. The increase in deformation between the transverse and longitudinal sections (TS and LS) during hot rolling led to an increase in residual strain and a decrease in residual stress in wire rods. Furthermore, the uniform grains and more random texture observed after Nb microalloying increased the microstructure uniformity of wire rods. This phenomenon was thought to be caused by the precipitation of Nb carbides during hot rolling. (c) 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Su X, Wang H X, Zhu M, et al.

In-situ observation for effect of niobium on pearlite transformation in high-carbon steels

[J]. Iron Steel, 2022, 57(4): 88

苏 雪, 王厚昕, 朱 敏 .

原位观察铌对高碳钢珠光体相变的影响

[J]. 钢铁, 2022, 57(4): 88

Tian J Y, Wang H X, Zhu M, et al.

Improving mechanical properties in high-carbon pearlitic steels by replacing partial V with Nb

[J]. Mater. Sci. Eng., 2022, A834: 142622

[本文引用: 1]

Zhang Y, Li X X, Wei K, et al.

Element segregation in GH4169 superalloy large-scale ingot and billet manufactured by triple-melting

[J]. Acta Metall. Sin., 2020, 56: 1123

DOI      [本文引用: 1]

GH4169 has the advantage of excellent comprehensive mechanical properties, good oxidation and corrosion resistance, etc., which have been widely used in aero engine with the largest consumption. The GH4169 parts include high pressure compressor disk, turbine disk, shaft, gearbox and forged blade, et al. With the development of technology and the requirement of cost reducing, the size of GH4169 ingot and billet increases gradually at home and abroad. However, element segregation becomes more and more severe as the size of GH4169 ingot and billet increases, which will significantly degrade their mechanical properties. In this work, the large-scale GH4169 superalloy ingot (diameter 508 mm) was prepared by triple smelting, vacuum induction melting (VIM)+electro sag remelting (ESR)+vacuum arc remelting (VAR). Then, large-scale GH4169 billet (diameter 240 mm) was obtained from this prepared ingot via two-step high temperature homogenization heat treatment and cogging-forging. The element composition and microstructure at different positions of these large-scale ingot and billet were analyzed by SEM, TEM, EPMA and EDS. The results show that the segregation degree of element Al in GH4169 ingot is small, while those of elements Nb, Ti and Mo are large. Moreover, a lot of secondary phases were precipitated at the interdendritic regions of GH4169 ingot, including MC, Laves and δ phase. In the GH4169 billet prepared in our work, no "freckle" or "white spot" macro segregation was recognized, and the micro-element segregation was eliminated. Furthermore, combined with computational simulation, the chemical composition uniformity and main mechanical properties of GH4169 and Inconel 718 billets were compared. The statistical analysis using sample variance of macro chemical composition shows that the uniformity of chemical composition in GH4169 billet produced by different manufactures is different. The regional element segregation results in some vacillation on the mechanical properties of GH4169 billet. It is proposed that this regional element segregation can be further depressed by elaborately controlling the triple melting process and optimizing the homogenization heat treatment and forging process.

张 勇, 李鑫旭, 韦 康 .

三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为

[J]. 金属学报, 2020, 56: 1123

[本文引用: 1]

Xie Y, Cheng G G, Chen L, et al.

Characteristics and generating mechanism of large precipitates in Nb-Ti-microalloyed H13 tool steel

[J]. ISIJ Int., 2016, 56: 995

[本文引用: 1]

Jiang Q C, Sui H L, Guan Q F.

Thermal fatigue behavior of new type high-Cr cast hot work die steel

[J]. ISIJ Int., 2004, 44: 1103

[本文引用: 1]

Tchuindjang J T, Lecomte-Beckers J.

Fractography survey on high cycle fatigue failure: Crack origin characterisation and correlations between mechanical tests and microstructure in Fe-C-Cr-Mo-X alloys

[J]. Int. J. Fatigue, 2007, 29: 713

[本文引用: 1]

Jang J H, Lee C H, Heo Y U, et al.

Stability of (Ti, M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations

[J]. Acta Mater., 2012, 60: 208

[本文引用: 1]

Fang C M, van Huis M A, Zandbergen H W.

Structural, electronic, and magnetic properties of iron carbide Fe7C3 phases from first-principles theory

[J]. Phys. Rev., 2009, 80B: 224108

[本文引用: 2]

Zhang D, Zheng H, Hou T P, et al.

Hardness increases due to (Fe, Cr)2C carbide precipitated during natural aging in high chromium cast iron

[J]. Vacuum, 2023, 209: 111766

[本文引用: 1]

Klymko T, Sluiter M H F.

Computing solubility products using ab initio methods precipitation of NbC in low alloyed steel

[J]. J. Mater. Sci., 2012, 47: 7601

[本文引用: 3]

Arroyave R, Shin D, Liu Z K.

Ab initio thermodynamic properties of stoichiometric phases in the Ni-Al system

[J]. Acta Mater., 2005, 53: 1809

[本文引用: 1]

Shang S L, Wang Y, Kim D, et al.

First-principles thermodynamics from phonon and Debye model: Application to Ni and Ni3Al

[J]. Comput. Mater. Sci., 2010, 47: 1040

[本文引用: 1]

Voller V R.

Modeling micro scale phenomena for application in solidification process simulations

[A]. Proceedings of the Second International Conference on Processing Materials for Properties [C]. San Francisco: TMS, 2000: 1011

[本文引用: 1]

Scheil E.

Bemerkungen zur Schichtkristallbildung

[J]. Int. J. Mater. Res., 1942, 34(3): 70

[本文引用: 1]

Brody H D, Flemings M C.

Solute redistribution in dendritic solidification

[J]. Trans. Met. Soc. AJIME, 1966, 236: 615

[本文引用: 1]

Ohnaka I.

Mathematical analysis of solute redistribution during solidification with diffusion in solid phase

[J]. Trans. ISIJ, 1986, 26: 1045

[本文引用: 1]

Clyne T W, Kurz W.

Solute redistribution during solidification with rapid solid state diffusion

[J]. Metall. Trans., 1981, 12A: 965

[本文引用: 1]

Voller V R, Beckermann C.

Approximate models of microsegregation with coarsening

[J]. Metall. Mater. Trans., 1999, 30A: 3016

[本文引用: 4]

Voller V R, Beckermann C.

A unified model of microsegregation and coarsening

[J]. Metall. Mater. Trans., 1999, 30A: 2183

[本文引用: 4]

Liang X, Hou T P, Zhang D, et al.

New evaluation of the thermodynamics stability for bcc-Fe

[J]. J. Phys.: Condens. Matter., 2022, 34: 455801

[本文引用: 1]

Otero-de-la-Roza A, Luaña V.

GIBBS2: A new version of the quasi-harmonic model code. I. Robust treatment of the static data

[J]. Comput. Phys. Commun., 2011, 182: 1708

[本文引用: 1]

Otero-de-la-Roza A, Abbasi-Pérez D, Luaña V.

GIBBS2: A new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation

[J]. Comput. Phys. Commun., 2011, 182: 2232

[本文引用: 1]

Wolverton C, Zunger A.

First-principles theory of short-range order, electronic excitations, and spin polarization in Ni-V and Pd-V alloys

[J]. Phys. Rev., 1995, 52B: 8813

[本文引用: 3]

Kresse G, Furthmüller J.

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set

[J]. Comput. Mater. Sci., 1996, 6: 15

[本文引用: 1]

Blöchl P E.

Projector augmented-wave method

[J]. Phys. Rev., 1994, 50B: 17953

[本文引用: 1]

Togo A, Tanaka I.

First principles phonon calculation in materials science

[J]. Scr. Mater., 2015, 108: 1

[本文引用: 1]

Guo W, Long M J, Wu J L, et al.

Effect of solute partition coefficient and TiN precipitation on micro-segregation of 22MnB5 steel

[J]. Iron Steel, 2022, 57(3): 44

[本文引用: 1]

郭 伟, 龙木军, 吴家璐 .

22MnB5钢溶质分配系数及TiN析出对微观偏析的影响

[J]. 钢铁, 2022, 57(3): 44

[本文引用: 1]

Won Y M, Thomas B G.

Simple model of microsegregation during solidification of steels

[J]. Metall. Mater. Trans., 2001, 32A: 1755

[本文引用: 1]

Fu Y X, Zhu L G, Sun L G, et al.

Calculation of high temperature solidification characteristics and high temperature physical properties of high strength steel containing niobium

[J]. Steelmaking, 2020, 36(2): 34

[本文引用: 3]

付雨潇, 朱立光, 孙立根 .

含Nb高强钢高温凝固特性与物性参数的计算

[J]. 炼钢, 2020, 36(2): 34

[本文引用: 3]

Chen M W, Wang Z D.

The evolution and morphological stability of a particle in a binary alloy melt

[J]. J. Cryst. Growth, 2023, 607: 127113

[本文引用: 1]

Villars P, Calvet L D. Pearson's Handbook of Crystallographic Data for Intermetallic Phases [M]. Metals Park: American Society for Metals, 1985: 1

[本文引用: 2]

Nartowski A M, Parkin I P, MacKenzie M, et al.

Solid state metathesis routes to transition metal carbides

[J]. J. Mater. Chem., 1999, 9: 1275

[本文引用: 2]

Singh D J, Klein B M.

Electronic structure, lattice stability, and superconductivity of CrC

[J]. Phys. Rev., 1992, 46B: 14969

[本文引用: 2]

Zhao C C, Xing X L, Guo J, et al.

Micro-properties of (Nb, M)C carbide (M = V, Mo, W and Cr) and precipitation behavior of (Nb, V)C in carbide reinforced coating

[J]. J. Alloys Compd., 2019, 788: 852

[本文引用: 2]

Wang R, Wang S F, Wu X Z.

Ab initio study of the thermodynamic properties of rare-earth-magnesium intermetallics MgRE (RE = Y, Dy, Pr, Tb)

[J]. Phys. Scr., 2011, 83: 065707

[本文引用: 1]

Gui L T, Long M J, Huang Y W, et al.

Effects of inclusion precipitation, partition coefficient, and phase transition on microsegregation for high-sulfur steel solidification

[J]. Metall. Mater. Trans., 2018, 49B: 3280

[本文引用: 2]

Zhang X W, Zhang L F, Yang W, et al.

Thermodynamics and dynamics of MnS inclusions precipitation during solidification process in heavy rail steels

[J]. Iron Steel, 2016, 51(9): 30

[本文引用: 1]

张学伟, 张立峰, 杨 文 .

重轨钢中MnS析出热力学和动力学分析

[J]. 钢铁, 2016, 51(9): 30

DOI      [本文引用: 1]

采用无水有机溶液电解法分离提取重轨钢中的MnS夹杂物,采用扫描电镜观察铸坯内和钢轨中MnS夹杂物的三维形貌,并结合能谱仪分析其成分。铸坯被轧制成钢轨后,相应的MnS夹杂物都沿着轧制方向被轧制成长条状。基于热力学和动力学模型,分析重轨钢中MnS夹杂物析出行为以及在钢液凝固过程中锰元素和硫元素偏析的程度。热力学分析表明,MnS夹杂物在凝固末期凝固分数为0.94时开始析出,其析出量由初始[w([Mn])]和初始[w([S])]决定,且在凝固过程受到冷却速率的影响,对比发现,热力学的计算析出结果与Thermo-Calc和FactSage6.4的计算结果有较好的一致性;动力学分析表明,在钢液凝固过程增加冷却速率,凝固析出的MnS颗粒尺寸将减小。通过调整钢中[w([Mn])]和[w([S])]以及改变冷却速率,可以控制MnS的析出时机和形态,减小其对钢性能的有害影响。

Chen J X. Data Manual of Common Steelmaking Charts [M]. Beijing: Metallurgical Industry Press, 1984: 565

[本文引用: 1]

陈家祥. 炼钢常用图表数据手册 [M]. 北京: 冶金工业出版社, 1984: 565

[本文引用: 1]

Liu Z Z, Wei J, Cai K K.

A coupled mathematical model of microsegregation and inclusion precipitation during solidification of silicon steel

[J]. ISIJ Int., 2002, 42: 958

[本文引用: 1]

/