金属学报, 2024, 60(4): 559-568 DOI: 10.11900/0412.1961.2022.00095

研究论文

金属圆棒超声螺旋扫查检测的合成孔径成像技术

李振杰1,2, 蔡桂喜,1, 张博1, 李经明1, 李建奎1

1 中国科学院金属研究所 沈阳 110016

2 中国科学技术大学 材料科学与工程学院 沈阳 110016

Synthetic Aperture Imaging Technology for Ultrasonic Spiral Scanning Detection of Metal Bars

LI Zhenjie1,2, CAI Guixi,1, ZHANG Bo1, LI Jingming1, LI Jiankui1

1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China

2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China

通讯作者: 蔡桂喜,gxcai@imr.ac.cn,主要从事材料无损检测与评价的研究

责任编辑: 李海兰

收稿日期: 2022-03-07   修回日期: 2022-04-29  

基金资助: 国家自然科学基金项目(31702393)
国家自然科学基金项目(31702393)
辽宁省自然科学基金项目(2019-MS-334)

Corresponding authors: CAI Guixi, professor, Tel: 13709823129, E-mail:gxcai@imr.ac.cn

Received: 2022-03-07   Revised: 2022-04-29  

Fund supported: National Natural Science Foundation of China(31702393)
National Natural Science Foundation of China(31702393)
Natural Science Foundation of Liaoning Province(2019-MS-334)

作者简介 About authors

李振杰,男,1996年生,硕士生

摘要

为实现金属圆棒的定量无损检测(QNDT),在经典的Cartesian坐标系超声合成孔径(SAFT)理论指导下,提出了极坐标系下的合成孔径聚焦成像(pSAFT)算法及其环绕式时域合成孔径聚焦技术(ST-SAFT)。基于螺旋扫查自动检测系统推导了采用有效合成孔径弧度(SAR)表示的延时叠加成像表达式;通过制备横孔型人工缺陷试样进行检测实验,将超声检测数据经ST-SAFT处理后成像为圆截面断层扫描图;再运用图像边缘识别法进行定量评价该方法对缺陷检测的定量定位分辨率。结果表明:ST-SAFT孔径测量值与实际值相当;横孔定位准确;成像分辨率显著优于B扫描结果;每圆截面成像速率可达毫秒量级,可与棒材检测一周的机械扫查速率相匹配。该技术可用于提升金属圆棒超声检测设备的技术水平和提高棒材使用安全性保障能力。

关键词: 棒材质量控制; 超声检测; 环绕式时域合成孔径聚焦技术(ST-SAFT); 螺旋扫查; 圆截面成像

Abstract

Spiral scanning mode, where ultrasonic probes relatively rotate forward around a tested bar, is commonly used in an automatic ultrasonic testing system for metal bar quality control. Current nondestructive testing standards for bars with ultrasonic technology specify that whether the bar is rejected or accepted should be made in accordance with the amplitude of the echo from a defect in the bar. The quality information obtained by the abovementioned standard testing procedure is only the echo from the defect, and it is too simple to characterize the defect in detail and accurately. Therefore, inspection using imagery and quantitative nondestructive testing (QNDT) of bar quality is the development trend of bar quality control technology in the future. In achieving QNDT of metal round bars, a synthetic aperture focusing on imaging algorithm in a polar coordinate system (pSAFT) and its surrounding scan-mode time-domain synthetic aperture focusing technology (ST-SAFT) were proposed in accordance with the classical ultrasonic synthetic aperture focusing technology (SAFT) theory on a Cartesian coordinate system. Based on the signal set collected by the spiral scanning automatic detection system, the formula of time-delay superposition imaging expressed by the effective synthetic aperture radian was deduced to image the defects in the bar with a cross-sectional view. By preparing a transverse-hole artificial defect sample for the testing experiment, ultrasonic testing data were processed by ST-SAFT, and then a circular section tomography was imaged. Image edge recognition was used to quantitatively evaluate the sizing ability and positioning resolution of ST-SAFT for defect detection. Experimental results show that the measured value of artificial defects with ST-SAFT is equivalent to the real value; the positioning of the transverse side-drilled hole is accurate, and the imaging resolution is significantly better than that of B-scan. The imaging speed for each circular section can reach the order of milliseconds, which can match the mechanical scanning speed of bar inspection for one circle. Therefore, this technology can be used to improve the technical level of ultrasonic automatic testing equipment for metal round bars and ensure safety of the application of metal round bars.

Keywords: quality control for bar; ultrasonic testing; surrounding-scan-mode time-domain synthetic aperture focusing technology (ST-SAFT); spiral scanning; circular section tomography

PDF (2647KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李振杰, 蔡桂喜, 张博, 李经明, 李建奎. 金属圆棒超声螺旋扫查检测的合成孔径成像技术[J]. 金属学报, 2024, 60(4): 559-568 DOI:10.11900/0412.1961.2022.00095

LI Zhenjie, CAI Guixi, ZHANG Bo, LI Jingming, LI Jiankui. Synthetic Aperture Imaging Technology for Ultrasonic Spiral Scanning Detection of Metal Bars[J]. Acta Metallurgica Sinica, 2024, 60(4): 559-568 DOI:10.11900/0412.1961.2022.00095

铸造和锻轧以及粉末冶金等工艺制成的金属圆棒及其零部件广泛应用于各工业领域,其制造过程中的缺陷若得不到及时发现和清除,极易降低工业设备运行的可靠性,甚至造成断裂事故,带来人员伤亡和极大的经济损失[1]。而无损检测与评价作为材料加工工程的一个重要分支,不但在产品材料质量和生产工艺质量控制、协调使用性能与经济效益等方面起着重要作用,还是保障材料及其产品使用安全性的重要技术手段[2]。因此,开展提升金属棒材及其零部件缺陷无损检测技术水平和棒材质量控制能力的研究具有重要意义。

对于金属棒材来说,常用的无损检测技术有射线[3]、磁粉[4]、渗透[5]、涡流[6]和超声检测[7,8]等五大类。其中超声检测技术拥有可靠性高、特征参量丰富和易于实现自动化等优点,已得到广泛应用[9]。目前的金属棒材超声自动化检测设备大多是基于超声棒材检测标准,以人工缺陷确定检测灵敏度,用超声探头对棒材进行螺旋扫查,以Go/No Go简单报警方式进行合格性评定。如:国标GB/T 37566—2019规定可采用纵波水浸聚焦自动化设备检测圆钢中的横孔缺陷,即基于A扫描信号(显示器的横坐标是超声波在被检材料中的传播时间或传播距离,纵坐标是超声反射回波的幅值)幅值报警来评价缺陷的尺寸[10]。由于棒材中缺陷形态与分布是复杂多样的,目前的棒材超声自动检测设备所提供的缺陷信息太少,对缺陷尺寸测量误差也较大,不利于金属棒材的合理使用和保障安全性。

对棒材质量状态进行成像检测甚至进行定量无损检测是棒材质量控制技术的发展趋势。源自合成孔径雷达技术的超声合成孔径成像技术(SAFT)[11],自20世纪70年代发展以来,由于其具有高信噪比、方位分辨率与检测深度无关、“近场”适用性、可与B扫(扫描图像以二维图像显示,屏幕显示的是与声速传播方向平行且与工件的测量表面垂直的剖面)、C扫描(是对某一深度的截面进行扫描,是二维平面内移动并选取A扫描特定深度的点的信号成像,显示的是水平截面的缺陷信息)成像相结合等优势,在医学检查[12~14]和工业检测[15,16]等领域得到了进一步发展,其技术内容非常丰富。但大多是基于Cartesian坐标系直线扫查方式下的2D和3D成像。对于圆柱类棒材圆截面的合成孔径成像方法研究始于20世纪90年代医学超声成像研究,O'Donnell和Thomas[12]采用置于冠状动脉内腔的环形相控阵传感器,提出了圆截面导管的合成孔径方法。2015年,吴施伟[9]进一步将该方法发展用于工业检测的圆柱类工件在Cartesian坐标系下的B扫超声成像。

国内外学者针对圆截面或螺旋环绕扫查的SAFT成像的研究,除了聚焦在改进成像分辨率和成像反演速率方面外,还要针对圆柱曲面结构研究其特殊合成孔径算法。圆柱曲面结构检测方式主要有3种:一种是采用一维线阵相控阵探头检测圆柱形工件[17,18];另一种是水浸聚焦探头相对工件进行螺旋扫查[19,20],这是圆棒工业检测的主流;还有一种是用相控阵探头进行螺旋扫查[21],如检测大直径轧辊等。曲面结构的特殊合成孔径方法主要有3类:一是采用快速行进法(FMM)进行飞行时间校正[20];二是采用声场相对曲面结构的显式近似波解(CCWS)[17]或曲面前向矢量法(UFVA)[18]对SAFT进行改造;三是根据导出的圆柱坐标系下的波动方程,在频域上进行相位延迟[9,22]

综上分析,有必要研究能推动现有棒材超声自动化检测设备技术进步的实用性SAFT方法。本工作研究了环绕式时域(surrounding-scan-mode time-domain)合成孔径聚焦技术(ST-SAFT),既要提高检测分辨率,又要尽可能满足在线实时检测的需求,并以类似于CT成像的断层扫描图形式直观显示棒材内缺陷尺寸与分布等信息,为棒材质量评价提供更丰富而准确的信息。

1 SAFT成像理论

1.1 极坐标系SAFT聚焦成像算法

经典的Cartesian坐标系下探头进行线性扫查的SAFT成像过程如图1所示,对于工件中任意点A(x, z),会处于有效合成孔径长度L (L= 0.84λz / D,其中λ为波长,D为探头晶片直径,z为目标位置至探头的距离)的各检测位置1···i···n探头声场中,各位置检测信号为Sk(t),则利用Sk(t)对工件内部状况进行反演图像重建时,SAFT算法的延时叠加公式[23]为:

SSAFT(x, z)=k=1nSk(t-τki)n

式中,SSAFT(x, z)为该点的反演合成信号强度,i表示图像重建时正对于A点的探头位置,t为第k个探头位置接收到A点反射信号的时间,τki表示第k个探头位置相对于第i个位置的信号延迟时间(τki=2(k-i)2Δx2+z2-z / CΔx为探头步进间距,C为工件中的声速)。由图1可见,A点缺陷的信号区间M经SAFT延时叠加处理后可变为点M',从而提高成像分辨率。

图1

图1   Cartesian坐标系下超声合成孔径成像技术(SAFT)原理图

Fig.1   Schematic diagram of SAFT imaging in cartesian coordinate system (SAFT—synthetic aperture focusing technology; x and z—location for object point by lateral distance and depth, L—effective length of synthetic aperture, β0.5—diffusion angle of sound beam, 1…in—position of each probe, S1SiSn—detection signal at each probe position, M and M ′—measured size of defect A before and after SAFT processing, respectively)

(a) linear scanning mode

(b) signal set corresponding to each detection position

(c) SAFT reconstructed image


但在检测金属棒材时,由于常采用螺旋扫查方式,故经典的SAFT方法需要进行改造。假定用直径为D、焦距为F的水浸聚焦探头检测圆棒,使焦点位于棒表面,以Δφ(rad)步距角对半径为R的圆棒进行螺旋扫查。

图2所示,工件中声束可视为焦点前变窄的入射声束的反向扩展,因此可将探头的焦点设为SAFT重建过程的虚拟孔径[24]。由于焦点位于耦合剂和试样之间的异质界面,因此在计算虚拟源的孔径角θ'时必须考虑折射效应。声束入射角和半孔径角分别为:

θ2=arctan (D2F)
 θ'2=arcsin (sin (θ2)C2C1)

图2

图2   圆棒在极坐标系下SAFT (pSAFT)成像原理图

Fig.2   Schematics of SAFT in polar coordinate system (pSAFT) imaging of round bar (R—cross section radius of round bar, r—radius of inscribed circle of sound beam, θ—twice the incident angle of sound beam, θ'—aperture angle of virtual source, φ1φiφn—circumferential scanning angle, γ and γ'—synthetic aperture radian for virtual inspection aperture near and far away object A respectively, ρ and α—location for defect in polar system by polar radius and angle respectively, d—distance from virtual aperture position to object point)

(a) surrounding-scan-mode, object B in the ‘r’ zone

(b) scope of virtual inspection aperture for object A (scanning at d<R side)

(c) scope of virtual inspection aperture for object A (scanning at d>R side)

(d) object B signal set corresponding to each scanning angle

(e) object A signal set corresponding to each scanning angle

(f) circular section tomograph


式中,C1表示水中声速,C2表示试样内声速,θ表示2倍声束入射角。

令虚拟孔径位置至目标点的距离为d,当目标点B位于心部r区内时,会被所有扫查位置探头声场所覆盖(如图2a所示),因此,所有扫查角度下信号都将参与SFAT创建,即有效合成孔径弧度(SAR)为2π;当目标点A位于棒表面之下近表面区即r区外时,会被如图2b所示各扫查角下的声场所覆盖(此时d<R),也会被如图2c所示各扫查角下的声场所覆盖(此时d>R)。这2种目标点的信号集分别如图2de所示。r区内外分界线可用如图2a中半径为r的虚线圆表示。即

r=Rsin(θ'2)

建立如图3所示的极坐标系,当目标点A(ρ, α)位于近场侧时(r<ρ<R) (ρα分别为A点的极径和极角),其SAR为γ。根据图3a的几何关系可得:

γ=2arcsin rρ-θ'

图3

图3   极坐标系下合成孔径弧度(SAR)推导示意图

Fig.3   Schematics about synthetic aperture radian (SAR) derivation in polar coordinate (ψ—intermediate variable used to calculate γ and γ', is the sum of half aperture angle of the virtual source and half of the SAR)

(a) for scanning at d<R side (b) for scanning at d>R side


目标点A还可从图2c所示远场侧被探测到,根据图3b的几何关系可得远场侧探测时的SAR为γ'

γ'=2arcsin rρ+θ'

根据极坐标系下两点间的距离公式,各扫查位置P(R, φk)相对于目标点A(ρ, α)进行SAFT的信号延迟时间τki为:

τki=2R2+ρ2-2Rρcos α-φk-R-ρC2

因此,极坐标系下的合成孔径(pSAFT)聚焦成像公式为:

SpSAFTρ, α=k=1NSk(t-τki)N       (ρr)        (8-1)SpSAFTρ, α=k=1M1Sk(t-τki)M1 (ρ>r, d<R) (8-2)SpSAFTρ, α=k=1M2Sk(t+τki)M2(ρ>r, d>R) (8-3)

式中,N=2πΔφ+1M1=γΔφ+1M2=γ'Δφ+1式(8)的实质就是利用实际扩散声场的检测信号Sk(t)将之转化为在目标点的以虚拟聚焦声场得到的检测信号SpSAFTρ,  α,即通过聚焦原理提高圆棒内缺陷定位准确率和分辨率。

1.2 ST-SAFT成像

螺旋扫查一周后将得到数据集Sφ(t)φ0~2π。进行pSAFT处理的第一步是根据探头参数和 式(3)计算工件表面的半孔径角;并根据 式(4)计算能被所有位置声束覆盖的内接圆半径r

第二步是对圆棒内所有点A(ρ, α) (其中ρ0~R, α0~2π)以适当的成像分辨率Δx (如每像素代表0.1 mm)分别将Sφ(t)式(8)进行合成聚焦计算,当ρr时按式(8- 1)计算,当ρ>r时按式(8- 2)和(8-3)计算,从而得到数据矩阵 Sp(i, j),i表示径向从0到RΔx的计数,j表示周向从0到2πΔφ的计数。

第三步将极坐标数据矩阵进行坐标变换以显示圆截面断层扫描图,可如图2f所示,坐标变换公式为:

x=ρcos (α)y=ρsin (α)

注意到当ρ很小时,可以以数倍的Δφ进行计算,从而减少计算量和提高成像速率。基于上述思想,还可进一步改进算法以提高成像质量和成像速率。

2 实验设备和试样

2.1 实验设备和检测参数

超声成像实验设备如图4所示,由机械设备和超声检测电子设备组成。Y轴电机用于调整探头对准圆棒的母线,Z轴电机用于调整探头相对于圆棒的焦点位置,X轴电机使探头沿圆棒轴线移动,U轴电机驱动圆棒旋转移动,从而实现对圆棒的环绕式螺旋超声扫查检测。

图4

图4   实验设备

Fig.4   Photo of experimental equipment (a) and schematic diagram of spiral scanning for a bar (b)


实验采用45#热轧态圆钢棒(直径为65 mm,高35 mm),声速为5900 m/s;采用晶片直径13 mm的5 MHz水浸聚焦探头,焦距为55 mm;探头声束垂直于被检试样表面入射,水距为55 mm;采样频率为50 MHz。沿轴向扫查20 mm,螺距1 mm,周向步距角为1°。

2.2 人工试样设计

为考察ST-SAFT的成像分辨率,选取上述圆钢设计了人工缺陷试样。共设计有11个横孔,孔深25 mm,试样实物图及各横孔在其端面的位置分布如图5ab表1所示。

图5

图5   钢制试样示意图

Fig.5   Schematic diagram of steel specimen (ϕ—diameter of the specimen)

(a) transverse-hole artificial defect sample (b) polar diagram of each transverse hole position


表1   人工缺陷位置及尺寸测量

Table 1  Location and size measurement of artificial defects

HoleDefect sizeDefect position
numberϕ / mmρ / mmα / (º)
Design valueMeasured valueAbsolute errorDesign valueMeasured valueAbsolute errorDesign valueMeasured valueAbsolute error
1#2.02.0010.011.11.151532
2#2.02.0010.010.80.874722
3#2.02.0022.523.10.61411410
4#2.02.0022.523.81.31511510
5#2.02.0022.523.51.01641651
6#1.01.40.422.523.71.22352341
7#1.51.80.322.524.21.72442431
8#2.02.0022.524.62.12542551
9#2.02.0018.520.31.82742740
10#2.01.80.214.515.91.42942951
11#2.02.0010.511.51.03143140

新窗口打开| 下载CSV


其中1#~2#和10#~11#的ϕ2横孔都位于r区以内,1#~2#用于考察r区内的周向分辨率;3#~5#用于考察不同周向间距的分辨率;6#~8#用于考察不同尺寸缺陷的分辨率;9#~11#用于考察跨r区的径向分辨率。

3 检测结果及分析

3.1 ST-SAFT处理前后的成像图对比

将检测一周得到的各扫查角度位置的超声回波信号采样记录下来,然后将此原始数据进行B扫成像如图6a所示,通过将采样时间转化为试样内深度,并进行简单坐标变换可得到此截面的扫查成像结果如图6b所示。从图6a可看出,1#~2#、3#~5#和6#~8#缺陷难以区分开来,而从图6b则可区分开1#和2#,这说明不同的成像方式分辨缺陷的能力是不同的,截面成像方式更优,但不进行SAFT处理仍然不能反映缺陷的真实分布状况。

图6

图6   某一周扫查结果成像图

Fig.6   Imaging charts of scanning results in a circle

(a) B-scan image (b) cross-sectional image with raw data


将该原始数据按前述ST-SAFT法进行处理后缺陷径向深度位置的周向展开图和截面成像图如图7ab所示。对比图5图7b,可见ST-SAFT处理后的截面断层扫描图能够很直观地反映缺陷状况。

图7

图7   ST-SAFT处理后的成像图

Fig.7   ST-SAFT processed images

(a) circumferential expansion of radial depth position of defect

(b) cross-sectional tomogram after ST-SAFT processing


3.2 ST-SAFT成像的缺陷分辨能力

图6a的数据以采样深度150~600 pts设置闸门,读取各周向扫查位置信号闸门内的最大幅值得到缺陷的周向分布曲线如图8所示,由于不满足6 dB分辨规则,只能将11个缺陷识别为4个,这在实际检测中会夸大缺陷的尺寸。同样可将ST-SAFT处理后的图7a的数据处理得到缺陷的周向分布曲线,如图9所示,11个缺陷可完全分辨,图9说明图像信噪比高达26 dB。对图7放大进行缺陷边缘识别如图10所示,各显示缺陷尺寸与真实值对比如表1所示。说明以0.2 mm的像素长度测量时,缺陷尺寸测量误差约在2个像素长度单位以内(约0.4 mm);缺陷位置的极径ρ测量误差为0.6~2.1 mm,再以人工缺陷半径进行修正,缺陷的径向定位误差约1 mm;极角α的测量误差为1°。因此ST-SAFT的缺陷定量定位能力能满足工程检测需求。

图8

图8   ST-SAFT处理前的分辨率曲线

Fig.8   Resolution curve before ST-SAFT processing


图9

图9   ST-SAFT处理后的分辨率曲线

Fig.9   Resolution curve after ST-SAFT processing


图10

图10   ST-SAFT处理后的成像图

Fig.10   Zoom images processed by ST-SAFT to indicate those holes positions (Herein, ϕ means the measured diameter of transverse hole image)


图9根据峰值下降6 dB法进行分辨率的计算,r区的1#~2#的周向分辨率为2.43°;3#~5#不同周向间距的分辨率为2.09°,与方位分辨率理论值δϕDf / (2R)0.02rad[9] (其中,Df为焦斑直径)基本相符;6#~8#不同尺寸缺陷的周向分辨率为3.26°。由图10沿径向画出信号分布曲线按-6 dB法,得9#~11#跨r区的径向分辨率为0.58 mm,小于人工缺陷尺寸。可见其方位分辨率与深度无关等特性与经典SAFT的优势一致。

3.3 ST-SAFT的成像速度

在2.6 GHz的CPU为Intel®Core™i7的笔记本电脑上,用MATLAB编程,环绕一周扫查后进行一个截面ST-SAFT成像处理的时间大约需250 ms,这意味着ST-SAFT成像速率可与每秒扫查4周的机械扫查速率相匹配。如果采用机器语言(如VC)则成像速率还可提高一倍,若采用FPGA和DSP产品的专用仪器则成像速率更快,可适应每秒扫10周的机械扫查快速实时检测速率。

ST-SAFT在连续检测时的成像方式可如图11的360°展开式的3D成像及切片式成像,也可以如图12的柱状3D成像和连续视频方式的截面成像,从而可对试样内部缺陷的3D分布信息进行综合评价。

图11

图11   ST-SAFT处理后的初始连续成像

Fig.11   Initial serial imaging after ST-SAFT processing

(a) 3D image (b) axial space slice


图12

图12   ST-SAFT处理后的最终连续成像

Fig.12   Final serial imaging after ST-SAFT processing

(a) columnar image (b) axial space section


4 讨论

工程上,金属棒材通常主要用平探头进行纵波检测,常以ϕ2.0平底孔作为检测灵敏度,而本实验设计中以ϕ2.0ϕ1.0横孔作为检测灵敏度和采用5 MHz水浸聚焦探头,均是以满足高质量要求金属棒材的检测需求为目标的。实验中ϕ1.0横孔(大致对应于GB/T 4162—2008中的AAA最高质量等级)在SAFT前后都能可靠检出,虽然未能显示出ST-SAFT在提高灵敏度方面的益处,这是由于本实验的圆钢材料本底噪声小、干扰性随机噪声小和人工缺陷信号较强,但SAFT在成像过程中是对各目标点附近多个信号的合成(见 式(8)),它具有平均滤波抑制噪声的作用,理论上可提高信噪比与检测灵敏度。因此ST-SAFT相较于常规棒材超声探伤技术,既可提供缺陷的定量、定位以及其分布状况等更丰富的信息,还能以高信噪比而检测出小缺陷(也有研究[25]指出:理论上超声检测可检出的最小缺陷尺寸近似为探头中心频率对应的半波长),一些原来难以探伤的棒材(如粗晶材料和粉末冶金材料)检测难题可尝试用SAFT解决。

上述ST-SAFT理论及实验是基于探头焦点位于圆棒表面的情况,另外的焦点位置还有3种情况:分别位于:(a) 棒外的水中,(b) 棒表面下和(c) 棒的圆心。基于上述极坐标下pSAFT理论可分别推导出ST-SAFT成像算法。对于情况(a),r区较大,则会出现大面积过度合成现象,其ST-SAFT成像效果不佳且增加了计算时间而减慢成像速率。对于情况(c),直接对检测数据进行B扫成像的分辨率要优于图6,但其ST-SAFT处理后的成像效果更佳(与聚焦于表面的图7相近),成像速率比情况(a)略慢。对于情况(b),只在焦点区直接B扫成像效果较佳,而经其ST-SAFT处理后的成像效果也与聚焦于表面的图7相近。因此,ST-SAFT相当于对圆棒内各点都是以聚焦的焦点进行检测的,焦点位置的设置对成像效果影响不大,其差别在于算法的复杂度和成像速率。

虽然本实验对象是ϕ65圆钢,但ST-SAFT是可满足GB/T 4162等标准要求(圆钢直径范围ϕ12~ ϕ250)的。不过,在进行ST-SAFT成像处理时,应综合考虑被检棒材材质、直径和检测灵敏度及检测效率要求等因素,并据此优化确定探头频率、扫查步进角和分辨率等检测参数与成像参数。

需要注意的是,图7的断层扫描成像图中显示圆棒表层有一定的检测盲区,这是界面波的阻塞效应造成的,需要采用声束斜入射的脉冲回波检测技术加以补充,以检测表面及近表层缺陷。另外,图7中还有缺陷的多次回波所产生的伪像,因此,声束斜入射时的SFAT技术及多次反射的伪像消除技术还需进一步研究。

5 结论

(1) pSAFT具有与Cartesian坐标系下的SAFT一样的优势:即高信噪比、方位分辨率与检测深度无关等,实验的角分辨率可达到其理论值。

(2) ST-SAFT的断层扫描成像方式相比于B扫成像方式更优,能更加直观和准确地反映缺陷的尺寸、位置以及分布状况,以进行缺陷定量、定位和定性评价。

(3) ST-SAFT算法的一个圆截面的成像速率可与棒材螺旋式机械扫查速率相匹配,可满足快速实时检测需求。

参考文献

Liu X K, Yang S X, Liu Y Q, et al.

Laser ultrasonic identification method for surface cracks on cylindrical metal components

[J]. J. Vib. Shock, 2020, 39(5): 10

[本文引用: 1]

刘学坤, 杨世锡, 刘永强 .

圆柱类金属构件表面裂纹的激光超声识别方法研究

[J]. 振动与冲击, 2020, 39(5): 10

[本文引用: 1]

The Chinese Society for NDT. NDT Development Roadmap[M]. Beijing: China Science and Technology Press, 2020: 5

[本文引用: 1]

中国机械工程学会无损检测分会. 无损检测发展路线图[M]. 北京: 中国科学技术出版社, 2020: 5

[本文引用: 1]

Guo X X, Situm A, Barlow B C, et al.

Soft X-ray spectromicroscopy studies of pitting corrosion of reinforcing steel bar

[J]. Surf. Interface Anal., 2019, 51: 681

DOI      URL     [本文引用: 1]

Lu J L, Cheng G G, Wu M, et al.

Detection and analysis of magnetic particle testing defects on heavy truck crankshaft manufactured by microalloyed medium-carbon forging steel

[J]. J. Iron Steel Res. Int., 2020, 27: 608

DOI      [本文引用: 1]

Hu X Z. Penetration Testing[M]. 2nd Ed., Beijing: China Labor and Social Security Press, 2007: 168

[本文引用: 1]

胡学知. 渗透检测[M]. 第 2版, 北京: 中国劳动社会保障出版社, 2007: 168

[本文引用: 1]

Fuentes J, Echeveste S, Garcia J, et al.

Surface-critical defects analysis in hot-rolled long products, wire rod and bars with eddy current and artificial vision testing

[A]. Iron and Steel Technology Conference Proceedings[C]. Pittsburgh: Association for Iron and Steel Technology, 2018: 1923

[本文引用: 1]

Zeng W, Yao Y Y.

Numerical simulation of laser-generated ultrasonic waves for detection surface defect on a cylinder pipe

[J]. Optik, 2020, 212: 164650

DOI      URL     [本文引用: 1]

Daryabor P, Safizadeh M S.

Investigation of morphology techniques capability for the enhancement of ultrasonic C-scan images of composite patches

[J]. Mater. Eval., 2019, 77: 203

[本文引用: 1]

A technique for the application of composite patches for repairing metallic structures has been developed recently. In order to achieve to an effective repair, high-quality patches and bonding should be used. Various ultrasonic testing (UT) techniques, such as pulse-echo, are commonly used to check the patch and bonding. Ultrasonic measurements are associated with some limitations, especially for the multilayered structures, due to the presence of a significant amount of noise in the scan images. In order to enhance the UT images, various processing techniques can be employed. In the present research, different image processing algorithms based on morphology techniques have been adopted to enhance the C-scan images obtained from the ultrasonic measurement of five carbon/epoxy patches bonded to an aluminum plate. Twelve delaminations with various sizes and locations along with three disbond discontinuities were artificially embedded in the five patches. The processed and input images have been quantitatively compared to clarify how useful the utilized morphology processing algorithms can be. According to the comparison results, a morphology-based processing algorithm that is more useful than the others has been introduced.

Wu S W. Research on theory and application of on-line ultrasound imaging for cylindrical components based on synthetic aperture[D]. Hangzhou: Zhejiang University, 2015

[本文引用: 4]

吴施伟. 基于合成孔径的圆柱类部件在线超声成像理论与实践的研究[D]. 杭州: 浙江大学, 2015

[本文引用: 4]

Mouritz A P, Townsend C, Shah Khan M Z.

Non-destructive detection of fatigue damage in thick composites by pulse-echo ultrasonics

[J]. Compos. Sci. Technol., 2000, 60: 23

DOI      URL     [本文引用: 1]

Sun B S, Shen J Z.

Synthetic aperture focused ultrasound imaging (I)

[J]. J. Appl. Acoust., 1993, 12(3): 43

[本文引用: 1]

孙宝申, 沈建中.

合成孔径聚焦超声成像(一)

[J]. 应用声学, 1993, 12(3): 43

[本文引用: 1]

O'Donnell M, Thomas L J.

Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging

[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1992, 39: 366

[本文引用: 2]

Zheng C C, Cheng J, Peng H.

Ultrasonic synthetic aperture imaging algorithm based on power sample entropy as adaptive weight

[J]. Acta Acust., 2017, 42: 109

郑驰超, 成 娟, 彭 虎.

次方样本熵自适应加权的超声合成孔径成像算法

[J]. 声学学报, 2017, 42: 109

Mirzaei M, Asif A, Rivaz H.

Virtual source synthetic aperture for accurate lateral displacement estimation in ultrasound elastography

[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2021, 68: 1687

DOI      URL     [本文引用: 1]

Cui W K, Qin K H.

Fast 3-D ultrasonic imaging using time-domain synthetic aperture focusing techniques based on circular scan conversions

[J]. IEEE Trans. Comput. Imaging, 2018, 4: 632

DOI      URL     [本文引用: 1]

Selim H, Trull J, Prieto M D, et al.

Fully noncontact hybrid NDT for 3D defect reconstruction using SAFT algorithm and 2D apodization window

[J]. Sensors, 2019, 19: 2138

DOI      URL     [本文引用: 1]

Hirose S, Nishimoto S, Maruyama T, et al.

Improved ultrasonic SAFT imaging of flaws in structures with curved surfaces

[J]. AIP Conf. Proc., 2014, 1581: 36

[本文引用: 2]

Li Y J, Wang Z Y, Zhang Y, et al.

Synthetic aperture imaging in cylindrical component using ultrasonic immersion forward vector algorithm

[J]. Russ. J. Nondestr. Test., 2020, 56: 397

DOI      [本文引用: 2]

Jin H, Chen J, Wu E, et al.

Frequency-domain synthetic aperture focusing for helical ultrasonic imaging

[J]. J. Appl. Phys., 2017, 121: 134901

DOI      URL     [本文引用: 1]

The synthetic aperture focusing technique (SAFT) is widely used to provide significant improvement in the lateral resolution of ultrasonic images. Frequency-domain SAFT has shown higher accuracy and greater efficiency than time-domain SAFT. However, frequency-domain SAFT should be helix-based for ultrasonic scanning of cylindrical structures such as pipes and axletrees. In this study, a frequency-domain SAFT is proposed for 3D helical ultrasonic imaging applications. This technique adjusts the phase spectra of the images to complete the synthetic aperture focusing process. The focused image is precise because the proposed algorithm is established on the basis of the wave equation in a helical coordinate system. In addition, the algorithm can efficiently separate out point scatterers and present volume scatterers. The experimental results show that the proposed algorithm yields lower side lobes and enhances the angular resolution of the ultrasonic image to approximately 1°– 1.5°, which is much better than the performance of time-domain SAFT. The maximum deviations are only 0.6 mm, 0.5°, and 0.4 mm along the r-axes, θ-axes, and z-axes, respectively, which are appropriate for normal ultrasonic nondestructive testing.

Scharrer T, Koch A, Fendt K T, et al.

Ultrasonic defect detection in multi-material, axis-symmetric devices with an improved synthetic aperture focusing technique (SAFT)

[A]. 2012 IEEE International Ultrasonics Symposium[C]. Dresden: IEEE, 2012: 1039

[本文引用: 2]

Vrana J, SchÖrner K, Mooshofer H, et al.

Ultrasonic computed tomography-pushing the boundaries of the ultrasonic inspection of forgings

[J]. Steel Res. Int., 2018, 89: 1700448

DOI      URL     [本文引用: 1]

Wu S W, Skjelvareid M H, Yang K J, et al.

Synthetic aperture imaging for multilayer cylindrical object using an exterior rotating transducer

[J]. Rev. Sci. Instrum., 2015, 86: 083703

[本文引用: 1]

Peng H. Introduction to Ultrasound Imaging Algorithms[M]. Hefei: University of Science and Technology of China Press, 2008: 122

[本文引用: 1]

彭 虎. 超声成像算法导论[M]. 合肥: 中国科学技术大学出版社, 2008: 122

[本文引用: 1]

Nikolov S, Jensen J A.

Virtual ultrasound sources in high-resolution ultrasound imaging

[A]. Proceedings of SPIE 4687, Medical Imaging 2002: Ultrasonic Imaging and Signal Processing[C]. San Diego: SPIE, 2002: 395

[本文引用: 1]

Zhou Z G, Zhou J H, Zhang K S, et al.

Application of synthetic aperture focusing technique to defect quantification for immersion ultrasonic testing

[J]. J. Beijing Univ. Aeronaut. Astronaut., 2016, 42: 2017

[本文引用: 1]

周正干, 周江华, 章宽爽 .

合成孔径聚焦在水浸超声缺陷定量中的应用

[J]. 北京航空航天大学学报, 2016, 42: 2017

[本文引用: 1]

/