金属圆棒超声螺旋扫查检测的合成孔径成像技术
Synthetic Aperture Imaging Technology for Ultrasonic Spiral Scanning Detection of Metal Bars
通讯作者: 蔡桂喜,gxcai@imr.ac.cn,主要从事材料无损检测与评价的研究
责任编辑: 李海兰
收稿日期: 2022-03-07 修回日期: 2022-04-29
基金资助: |
|
Corresponding authors: CAI Guixi, professor, Tel:
Received: 2022-03-07 Revised: 2022-04-29
Fund supported: |
|
作者简介 About authors
李振杰,男,1996年生,硕士生
为实现金属圆棒的定量无损检测(QNDT),在经典的Cartesian坐标系超声合成孔径(SAFT)理论指导下,提出了极坐标系下的合成孔径聚焦成像(pSAFT)算法及其环绕式时域合成孔径聚焦技术(ST-SAFT)。基于螺旋扫查自动检测系统推导了采用有效合成孔径弧度(SAR)表示的延时叠加成像表达式;通过制备横孔型人工缺陷试样进行检测实验,将超声检测数据经ST-SAFT处理后成像为圆截面断层扫描图;再运用图像边缘识别法进行定量评价该方法对缺陷检测的定量定位分辨率。结果表明:ST-SAFT孔径测量值与实际值相当;横孔定位准确;成像分辨率显著优于B扫描结果;每圆截面成像速率可达毫秒量级,可与棒材检测一周的机械扫查速率相匹配。该技术可用于提升金属圆棒超声检测设备的技术水平和提高棒材使用安全性保障能力。
关键词:
Spiral scanning mode, where ultrasonic probes relatively rotate forward around a tested bar, is commonly used in an automatic ultrasonic testing system for metal bar quality control. Current nondestructive testing standards for bars with ultrasonic technology specify that whether the bar is rejected or accepted should be made in accordance with the amplitude of the echo from a defect in the bar. The quality information obtained by the abovementioned standard testing procedure is only the echo from the defect, and it is too simple to characterize the defect in detail and accurately. Therefore, inspection using imagery and quantitative nondestructive testing (QNDT) of bar quality is the development trend of bar quality control technology in the future. In achieving QNDT of metal round bars, a synthetic aperture focusing on imaging algorithm in a polar coordinate system (pSAFT) and its surrounding scan-mode time-domain synthetic aperture focusing technology (ST-SAFT) were proposed in accordance with the classical ultrasonic synthetic aperture focusing technology (SAFT) theory on a Cartesian coordinate system. Based on the signal set collected by the spiral scanning automatic detection system, the formula of time-delay superposition imaging expressed by the effective synthetic aperture radian was deduced to image the defects in the bar with a cross-sectional view. By preparing a transverse-hole artificial defect sample for the testing experiment, ultrasonic testing data were processed by ST-SAFT, and then a circular section tomography was imaged. Image edge recognition was used to quantitatively evaluate the sizing ability and positioning resolution of ST-SAFT for defect detection. Experimental results show that the measured value of artificial defects with ST-SAFT is equivalent to the real value; the positioning of the transverse side-drilled hole is accurate, and the imaging resolution is significantly better than that of B-scan. The imaging speed for each circular section can reach the order of milliseconds, which can match the mechanical scanning speed of bar inspection for one circle. Therefore, this technology can be used to improve the technical level of ultrasonic automatic testing equipment for metal round bars and ensure safety of the application of metal round bars.
Keywords:
本文引用格式
李振杰, 蔡桂喜, 张博, 李经明, 李建奎.
LI Zhenjie, CAI Guixi, ZHANG Bo, LI Jingming, LI Jiankui.
对于金属棒材来说,常用的无损检测技术有射线[3]、磁粉[4]、渗透[5]、涡流[6]和超声检测[7,8]等五大类。其中超声检测技术拥有可靠性高、特征参量丰富和易于实现自动化等优点,已得到广泛应用[9]。目前的金属棒材超声自动化检测设备大多是基于超声棒材检测标准,以人工缺陷确定检测灵敏度,用超声探头对棒材进行螺旋扫查,以Go/No Go简单报警方式进行合格性评定。如:国标GB/T 37566—2019规定可采用纵波水浸聚焦自动化设备检测圆钢中的横孔缺陷,即基于A扫描信号(显示器的横坐标是超声波在被检材料中的传播时间或传播距离,纵坐标是超声反射回波的幅值)幅值报警来评价缺陷的尺寸[10]。由于棒材中缺陷形态与分布是复杂多样的,目前的棒材超声自动检测设备所提供的缺陷信息太少,对缺陷尺寸测量误差也较大,不利于金属棒材的合理使用和保障安全性。
对棒材质量状态进行成像检测甚至进行定量无损检测是棒材质量控制技术的发展趋势。源自合成孔径雷达技术的超声合成孔径成像技术(SAFT)[11],自20世纪70年代发展以来,由于其具有高信噪比、方位分辨率与检测深度无关、“近场”适用性、可与B扫(扫描图像以二维图像显示,屏幕显示的是与声速传播方向平行且与工件的测量表面垂直的剖面)、C扫描(是对某一深度的截面进行扫描,是二维平面内移动并选取A扫描特定深度的点的信号成像,显示的是水平截面的缺陷信息)成像相结合等优势,在医学检查[12~14]和工业检测[15,16]等领域得到了进一步发展,其技术内容非常丰富。但大多是基于Cartesian坐标系直线扫查方式下的2D和3D成像。对于圆柱类棒材圆截面的合成孔径成像方法研究始于20世纪90年代医学超声成像研究,O'Donnell和Thomas[12]采用置于冠状动脉内腔的环形相控阵传感器,提出了圆截面导管的合成孔径方法。2015年,吴施伟[9]进一步将该方法发展用于工业检测的圆柱类工件在Cartesian坐标系下的B扫超声成像。
国内外学者针对圆截面或螺旋环绕扫查的SAFT成像的研究,除了聚焦在改进成像分辨率和成像反演速率方面外,还要针对圆柱曲面结构研究其特殊合成孔径算法。圆柱曲面结构检测方式主要有3种:一种是采用一维线阵相控阵探头检测圆柱形工件[17,18];另一种是水浸聚焦探头相对工件进行螺旋扫查[19,20],这是圆棒工业检测的主流;还有一种是用相控阵探头进行螺旋扫查[21],如检测大直径轧辊等。曲面结构的特殊合成孔径方法主要有3类:一是采用快速行进法(FMM)进行飞行时间校正[20];二是采用声场相对曲面结构的显式近似波解(CCWS)[17]或曲面前向矢量法(UFVA)[18]对SAFT进行改造;三是根据导出的圆柱坐标系下的波动方程,在频域上进行相位延迟[9,22]。
综上分析,有必要研究能推动现有棒材超声自动化检测设备技术进步的实用性SAFT方法。本工作研究了环绕式时域(surrounding-scan-mode time-domain)合成孔径聚焦技术(ST-SAFT),既要提高检测分辨率,又要尽可能满足在线实时检测的需求,并以类似于CT成像的断层扫描图形式直观显示棒材内缺陷尺寸与分布等信息,为棒材质量评价提供更丰富而准确的信息。
1 SAFT成像理论
1.1 极坐标系SAFT聚焦成像算法
式中,
图1
图1
Cartesian坐标系下超声合成孔径成像技术(SAFT)原理图
Fig.1
Schematic diagram of SAFT imaging in cartesian coordinate system (SAFT—synthetic aperture focusing technology; x and z—location for object point by lateral distance and depth, L—effective length of synthetic aperture,
(a) linear scanning mode
(b) signal set corresponding to each detection position
(c) SAFT reconstructed image
但在检测金属棒材时,由于常采用螺旋扫查方式,故经典的SAFT方法需要进行改造。假定用直径为D、焦距为F的水浸聚焦探头检测圆棒,使焦点位于棒表面,以
图2
图2
圆棒在极坐标系下SAFT (pSAFT)成像原理图
Fig.2
Schematics of SAFT in polar coordinate system (pSAFT) imaging of round bar (R—cross section radius of round bar, r—radius of inscribed circle of sound beam,
(a) surrounding-scan-mode, object B in the ‘r’ zone
(b) scope of virtual inspection aperture for object A (scanning at
(c) scope of virtual inspection aperture for object A (scanning at
(d) object B signal set corresponding to each scanning angle
(e) object A signal set corresponding to each scanning angle
(f) circular section tomograph
式中,
图3
图3
极坐标系下合成孔径弧度(SAR)推导示意图
Fig.3
Schematics about synthetic aperture radian (SAR) derivation in polar coordinate (
(a) for scanning at
根据极坐标系下两点间的距离公式,各扫查位置
因此,极坐标系下的合成孔径(pSAFT)聚焦成像公式为:
式中,
1.2 ST-SAFT成像
螺旋扫查一周后将得到数据集
第二步是对圆棒内所有点A(
第三步将极坐标数据矩阵进行坐标变换以显示圆截面断层扫描图,可如图2f所示,坐标变换公式为:
注意到当
2 实验设备和试样
2.1 实验设备和检测参数
超声成像实验设备如图4所示,由机械设备和超声检测电子设备组成。Y轴电机用于调整探头对准圆棒的母线,Z轴电机用于调整探头相对于圆棒的焦点位置,X轴电机使探头沿圆棒轴线移动,U轴电机驱动圆棒旋转移动,从而实现对圆棒的环绕式螺旋超声扫查检测。
图4
图4
实验设备
Fig.4
Photo of experimental equipment (a) and schematic diagram of spiral scanning for a bar (b)
实验采用45#热轧态圆钢棒(直径为65 mm,高35 mm),声速为5900 m/s;采用晶片直径13 mm的5 MHz水浸聚焦探头,焦距为55 mm;探头声束垂直于被检试样表面入射,水距为55 mm;采样频率为50 MHz。沿轴向扫查20 mm,螺距1 mm,周向步距角为1°。
2.2 人工试样设计
图5
图5
钢制试样示意图
Fig.5
Schematic diagram of steel specimen (ϕ—diameter of the specimen)
(a) transverse-hole artificial defect sample (b) polar diagram of each transverse hole position
表1 人工缺陷位置及尺寸测量
Table 1
Hole | Defect size | Defect position | |||||||
---|---|---|---|---|---|---|---|---|---|
number | ϕ / mm | ρ / mm | α / (º) | ||||||
Design value | Measured value | Absolute error | Design value | Measured value | Absolute error | Design value | Measured value | Absolute error | |
1# | 2.0 | 2.0 | 0 | 10.0 | 11.1 | 1.1 | 51 | 53 | 2 |
2# | 2.0 | 2.0 | 0 | 10.0 | 10.8 | 0.8 | 74 | 72 | 2 |
3# | 2.0 | 2.0 | 0 | 22.5 | 23.1 | 0.6 | 141 | 141 | 0 |
4# | 2.0 | 2.0 | 0 | 22.5 | 23.8 | 1.3 | 151 | 151 | 0 |
5# | 2.0 | 2.0 | 0 | 22.5 | 23.5 | 1.0 | 164 | 165 | 1 |
6# | 1.0 | 1.4 | 0.4 | 22.5 | 23.7 | 1.2 | 235 | 234 | 1 |
7# | 1.5 | 1.8 | 0.3 | 22.5 | 24.2 | 1.7 | 244 | 243 | 1 |
8# | 2.0 | 2.0 | 0 | 22.5 | 24.6 | 2.1 | 254 | 255 | 1 |
9# | 2.0 | 2.0 | 0 | 18.5 | 20.3 | 1.8 | 274 | 274 | 0 |
10# | 2.0 | 1.8 | 0.2 | 14.5 | 15.9 | 1.4 | 294 | 295 | 1 |
11# | 2.0 | 2.0 | 0 | 10.5 | 11.5 | 1.0 | 314 | 314 | 0 |
其中1#~2#和10#~11#的ϕ2横孔都位于
3 检测结果及分析
3.1 ST-SAFT处理前后的成像图对比
图6
图6
某一周扫查结果成像图
Fig.6
Imaging charts of scanning results in a circle
(a) B-scan image (b) cross-sectional image with raw data
图7
图7
ST-SAFT处理后的成像图
Fig.7
ST-SAFT processed images
(a) circumferential expansion of radial depth position of defect
(b) cross-sectional tomogram after ST-SAFT processing
3.2 ST-SAFT成像的缺陷分辨能力
将图6a的数据以采样深度150~600 pts设置闸门,读取各周向扫查位置信号闸门内的最大幅值得到缺陷的周向分布曲线如图8所示,由于不满足6 dB分辨规则,只能将11个缺陷识别为4个,这在实际检测中会夸大缺陷的尺寸。同样可将ST-SAFT处理后的图7a的数据处理得到缺陷的周向分布曲线,如图9所示,11个缺陷可完全分辨,图9说明图像信噪比高达26 dB。对图7放大进行缺陷边缘识别如图10所示,各显示缺陷尺寸与真实值对比如表1所示。说明以0.2 mm的像素长度测量时,缺陷尺寸测量误差约在2个像素长度单位以内(约0.4 mm);缺陷位置的极径
图8
图9
图10
图10
ST-SAFT处理后的成像图
Fig.10
Zoom images processed by ST-SAFT to indicate those holes positions (Herein,
3.3 ST-SAFT的成像速度
在2.6 GHz的CPU为Intel®Core™i7的笔记本电脑上,用MATLAB编程,环绕一周扫查后进行一个截面ST-SAFT成像处理的时间大约需250 ms,这意味着ST-SAFT成像速率可与每秒扫查4周的机械扫查速率相匹配。如果采用机器语言(如VC)则成像速率还可提高一倍,若采用FPGA和DSP产品的专用仪器则成像速率更快,可适应每秒扫10周的机械扫查快速实时检测速率。
图11
图11
ST-SAFT处理后的初始连续成像
Fig.11
Initial serial imaging after ST-SAFT processing
(a) 3D image (b) axial space slice
图12
图12
ST-SAFT处理后的最终连续成像
Fig.12
Final serial imaging after ST-SAFT processing
(a) columnar image (b) axial space section
4 讨论
工程上,金属棒材通常主要用平探头进行纵波检测,常以
上述ST-SAFT理论及实验是基于探头焦点位于圆棒表面的情况,另外的焦点位置还有3种情况:分别位于:(a) 棒外的水中,(b) 棒表面下和(c) 棒的圆心。基于上述极坐标下pSAFT理论可分别推导出ST-SAFT成像算法。对于情况(a),r区较大,则会出现大面积过度合成现象,其ST-SAFT成像效果不佳且增加了计算时间而减慢成像速率。对于情况(c),直接对检测数据进行B扫成像的分辨率要优于图6,但其ST-SAFT处理后的成像效果更佳(与聚焦于表面的图7相近),成像速率比情况(a)略慢。对于情况(b),只在焦点区直接B扫成像效果较佳,而经其ST-SAFT处理后的成像效果也与聚焦于表面的图7相近。因此,ST-SAFT相当于对圆棒内各点都是以聚焦的焦点进行检测的,焦点位置的设置对成像效果影响不大,其差别在于算法的复杂度和成像速率。
虽然本实验对象是
5 结论
(1) pSAFT具有与Cartesian坐标系下的SAFT一样的优势:即高信噪比、方位分辨率与检测深度无关等,实验的角分辨率可达到其理论值。
(2) ST-SAFT的断层扫描成像方式相比于B扫成像方式更优,能更加直观和准确地反映缺陷的尺寸、位置以及分布状况,以进行缺陷定量、定位和定性评价。
(3) ST-SAFT算法的一个圆截面的成像速率可与棒材螺旋式机械扫查速率相匹配,可满足快速实时检测需求。
参考文献
Laser ultrasonic identification method for surface cracks on cylindrical metal components
[J].
圆柱类金属构件表面裂纹的激光超声识别方法研究
[J].
Soft X-ray spectromicroscopy studies of pitting corrosion of reinforcing steel bar
[J].
Detection and analysis of magnetic particle testing defects on heavy truck crankshaft manufactured by microalloyed medium-carbon forging steel
[J].
Surface-critical defects analysis in hot-rolled long products, wire rod and bars with eddy current and artificial vision testing
[A].
Numerical simulation of laser-generated ultrasonic waves for detection surface defect on a cylinder pipe
[J].
Investigation of morphology techniques capability for the enhancement of ultrasonic C-scan images of composite patches
[J].A technique for the application of composite patches for repairing metallic structures has been developed recently. In order to achieve to an effective repair, high-quality patches and bonding should be used. Various ultrasonic testing (UT) techniques, such as pulse-echo, are commonly used to check the patch and bonding. Ultrasonic measurements are associated with some limitations, especially for the multilayered structures, due to the presence of a significant amount of noise in the scan images. In order to enhance the UT images, various processing techniques can be employed. In the present research, different image processing algorithms based on morphology techniques have been adopted to enhance the C-scan images obtained from the ultrasonic measurement of five carbon/epoxy patches bonded to an aluminum plate. Twelve delaminations with various sizes and locations along with three disbond discontinuities were artificially embedded in the five patches. The processed and input images have been quantitatively compared to clarify how useful the utilized morphology processing algorithms can be. According to the comparison results, a morphology-based processing algorithm that is more useful than the others has been introduced.
Non-destructive detection of fatigue damage in thick composites by pulse-echo ultrasonics
[J].
Synthetic aperture focused ultrasound imaging (I)
[J].
合成孔径聚焦超声成像(一)
[J].
Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging
[J].
Ultrasonic synthetic aperture imaging algorithm based on power sample entropy as adaptive weight
[J].
次方样本熵自适应加权的超声合成孔径成像算法
[J].
Virtual source synthetic aperture for accurate lateral displacement estimation in ultrasound elastography
[J].
Fast 3-D ultrasonic imaging using time-domain synthetic aperture focusing techniques based on circular scan conversions
[J].
Fully noncontact hybrid NDT for 3D defect reconstruction using SAFT algorithm and 2D apodization window
[J].
Improved ultrasonic SAFT imaging of flaws in structures with curved surfaces
[J].
Synthetic aperture imaging in cylindrical component using ultrasonic immersion forward vector algorithm
[J].
Frequency-domain synthetic aperture focusing for helical ultrasonic imaging
[J].The synthetic aperture focusing technique (SAFT) is widely used to provide significant improvement in the lateral resolution of ultrasonic images. Frequency-domain SAFT has shown higher accuracy and greater efficiency than time-domain SAFT. However, frequency-domain SAFT should be helix-based for ultrasonic scanning of cylindrical structures such as pipes and axletrees. In this study, a frequency-domain SAFT is proposed for 3D helical ultrasonic imaging applications. This technique adjusts the phase spectra of the images to complete the synthetic aperture focusing process. The focused image is precise because the proposed algorithm is established on the basis of the wave equation in a helical coordinate system. In addition, the algorithm can efficiently separate out point scatterers and present volume scatterers. The experimental results show that the proposed algorithm yields lower side lobes and enhances the angular resolution of the ultrasonic image to approximately 1°– 1.5°, which is much better than the performance of time-domain SAFT. The maximum deviations are only 0.6 mm, 0.5°, and 0.4 mm along the r-axes, θ-axes, and z-axes, respectively, which are appropriate for normal ultrasonic nondestructive testing.
Ultrasonic defect detection in multi-material, axis-symmetric devices with an improved synthetic aperture focusing technique (SAFT)
[A].
Ultrasonic computed tomography-pushing the boundaries of the ultrasonic inspection of forgings
[J].
Synthetic aperture imaging for multilayer cylindrical object using an exterior rotating transducer
[J].
Virtual ultrasound sources in high-resolution ultrasound imaging
[A].
/
〈 |
|
〉 |
