Please wait a minute...
金属学报  2024, Vol. 60 Issue (4): 559-568    DOI: 10.11900/0412.1961.2022.00095
  研究论文 本期目录 | 过刊浏览 |
金属圆棒超声螺旋扫查检测的合成孔径成像技术
李振杰1,2, 蔡桂喜1(), 张博1, 李经明1, 李建奎1
1 中国科学院金属研究所 沈阳 110016
2 中国科学技术大学 材料科学与工程学院 沈阳 110016
Synthetic Aperture Imaging Technology for Ultrasonic Spiral Scanning Detection of Metal Bars
LI Zhenjie1,2, CAI Guixi1(), ZHANG Bo1, LI Jingming1, LI Jiankui1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
引用本文:

李振杰, 蔡桂喜, 张博, 李经明, 李建奎. 金属圆棒超声螺旋扫查检测的合成孔径成像技术[J]. 金属学报, 2024, 60(4): 559-568.
Zhenjie LI, Guixi CAI, Bo ZHANG, Jingming LI, Jiankui LI. Synthetic Aperture Imaging Technology for Ultrasonic Spiral Scanning Detection of Metal Bars[J]. Acta Metall Sin, 2024, 60(4): 559-568.

全文: PDF(2647 KB)   HTML
摘要: 

为实现金属圆棒的定量无损检测(QNDT),在经典的Cartesian坐标系超声合成孔径(SAFT)理论指导下,提出了极坐标系下的合成孔径聚焦成像(pSAFT)算法及其环绕式时域合成孔径聚焦技术(ST-SAFT)。基于螺旋扫查自动检测系统推导了采用有效合成孔径弧度(SAR)表示的延时叠加成像表达式;通过制备横孔型人工缺陷试样进行检测实验,将超声检测数据经ST-SAFT处理后成像为圆截面断层扫描图;再运用图像边缘识别法进行定量评价该方法对缺陷检测的定量定位分辨率。结果表明:ST-SAFT孔径测量值与实际值相当;横孔定位准确;成像分辨率显著优于B扫描结果;每圆截面成像速率可达毫秒量级,可与棒材检测一周的机械扫查速率相匹配。该技术可用于提升金属圆棒超声检测设备的技术水平和提高棒材使用安全性保障能力。

关键词 棒材质量控制超声检测环绕式时域合成孔径聚焦技术(ST-SAFT)螺旋扫查圆截面成像    
Abstract

Spiral scanning mode, where ultrasonic probes relatively rotate forward around a tested bar, is commonly used in an automatic ultrasonic testing system for metal bar quality control. Current nondestructive testing standards for bars with ultrasonic technology specify that whether the bar is rejected or accepted should be made in accordance with the amplitude of the echo from a defect in the bar. The quality information obtained by the abovementioned standard testing procedure is only the echo from the defect, and it is too simple to characterize the defect in detail and accurately. Therefore, inspection using imagery and quantitative nondestructive testing (QNDT) of bar quality is the development trend of bar quality control technology in the future. In achieving QNDT of metal round bars, a synthetic aperture focusing on imaging algorithm in a polar coordinate system (pSAFT) and its surrounding scan-mode time-domain synthetic aperture focusing technology (ST-SAFT) were proposed in accordance with the classical ultrasonic synthetic aperture focusing technology (SAFT) theory on a Cartesian coordinate system. Based on the signal set collected by the spiral scanning automatic detection system, the formula of time-delay superposition imaging expressed by the effective synthetic aperture radian was deduced to image the defects in the bar with a cross-sectional view. By preparing a transverse-hole artificial defect sample for the testing experiment, ultrasonic testing data were processed by ST-SAFT, and then a circular section tomography was imaged. Image edge recognition was used to quantitatively evaluate the sizing ability and positioning resolution of ST-SAFT for defect detection. Experimental results show that the measured value of artificial defects with ST-SAFT is equivalent to the real value; the positioning of the transverse side-drilled hole is accurate, and the imaging resolution is significantly better than that of B-scan. The imaging speed for each circular section can reach the order of milliseconds, which can match the mechanical scanning speed of bar inspection for one circle. Therefore, this technology can be used to improve the technical level of ultrasonic automatic testing equipment for metal round bars and ensure safety of the application of metal round bars.

Key wordsquality control for bar    ultrasonic testing    surrounding-scan-mode time-domain synthetic aperture focusing technology (ST-SAFT)    spiral scanning    circular section tomography
收稿日期: 2022-03-07     
ZTFLH:  TG115.28  
基金资助:国家自然科学基金项目(31702393);国家自然科学基金项目(31702393);辽宁省自然科学基金项目(2019-MS-334)
通讯作者: 蔡桂喜,gxcai@imr.ac.cn,主要从事材料无损检测与评价的研究
Corresponding author: CAI Guixi, professor, Tel: 13709823129, E-mail: gxcai@imr.ac.cn
作者简介: 李振杰,男,1996年生,硕士生
图1  Cartesian坐标系下超声合成孔径成像技术(SAFT)原理图
图2  圆棒在极坐标系下SAFT (pSAFT)成像原理图
图3  极坐标系下合成孔径弧度(SAR)推导示意图
图4  实验设备
图5  钢制试样示意图
HoleDefect sizeDefect position
numberϕ / mmρ / mmα / (º)
Design valueMeasured valueAbsolute errorDesign valueMeasured valueAbsolute errorDesign valueMeasured valueAbsolute error
1#2.02.0010.011.11.151532
2#2.02.0010.010.80.874722
3#2.02.0022.523.10.61411410
4#2.02.0022.523.81.31511510
5#2.02.0022.523.51.01641651
6#1.01.40.422.523.71.22352341
7#1.51.80.322.524.21.72442431
8#2.02.0022.524.62.12542551
9#2.02.0018.520.31.82742740
10#2.01.80.214.515.91.42942951
11#2.02.0010.511.51.03143140
表1  人工缺陷位置及尺寸测量
图6  某一周扫查结果成像图
图7  ST-SAFT处理后的成像图
图8  ST-SAFT处理前的分辨率曲线
图9  ST-SAFT处理后的分辨率曲线
图10  ST-SAFT处理后的成像图
图11  ST-SAFT处理后的初始连续成像
图12  ST-SAFT处理后的最终连续成像
1 Liu X K, Yang S X, Liu Y Q, et al. Laser ultrasonic identification method for surface cracks on cylindrical metal components[J]. J. Vib. Shock, 2020, 39(5): 10
1 刘学坤, 杨世锡, 刘永强 等. 圆柱类金属构件表面裂纹的激光超声识别方法研究[J]. 振动与冲击, 2020, 39(5): 10
2 The Chinese Society for NDT. NDT Development Roadmap[M]. Beijing: China Science and Technology Press, 2020: 5
2 中国机械工程学会无损检测分会. 无损检测发展路线图[M]. 北京: 中国科学技术出版社, 2020: 5
3 Guo X X, Situm A, Barlow B C, et al. Soft X-ray spectromicroscopy studies of pitting corrosion of reinforcing steel bar[J]. Surf. Interface Anal., 2019, 51: 681
doi: 10.1002/sia.v51.6
4 Lu J L, Cheng G G, Wu M, et al. Detection and analysis of magnetic particle testing defects on heavy truck crankshaft manufactured by microalloyed medium-carbon forging steel[J]. J. Iron Steel Res. Int., 2020, 27: 608
doi: 10.1007/s42243-019-00334-7
5 Hu X Z. Penetration Testing[M]. 2nd Ed., Beijing: China Labor and Social Security Press, 2007: 168
5 胡学知. 渗透检测[M]. 第 2版, 北京: 中国劳动社会保障出版社, 2007: 168
6 Fuentes J, Echeveste S, Garcia J, et al. Surface-critical defects analysis in hot-rolled long products, wire rod and bars with eddy current and artificial vision testing[A]. Iron and Steel Technology Conference Proceedings[C]. Pittsburgh: Association for Iron and Steel Technology, 2018: 1923
7 Zeng W, Yao Y Y. Numerical simulation of laser-generated ultrasonic waves for detection surface defect on a cylinder pipe[J]. Optik, 2020, 212: 164650
doi: 10.1016/j.ijleo.2020.164650
8 Daryabor P, Safizadeh M S. Investigation of morphology techniques capability for the enhancement of ultrasonic C-scan images of composite patches[J]. Mater. Eval., 2019, 77: 203
9 Wu S W. Research on theory and application of on-line ultrasound imaging for cylindrical components based on synthetic aperture[D]. Hangzhou: Zhejiang University, 2015
9 吴施伟. 基于合成孔径的圆柱类部件在线超声成像理论与实践的研究[D]. 杭州: 浙江大学, 2015
10 Mouritz A P, Townsend C, Shah Khan M Z. Non-destructive detection of fatigue damage in thick composites by pulse-echo ultrasonics[J]. Compos. Sci. Technol., 2000, 60: 23
doi: 10.1016/S0266-3538(99)00094-9
11 Sun B S, Shen J Z. Synthetic aperture focused ultrasound imaging (I)[J]. J. Appl. Acoust., 1993, 12(3): 43
11 孙宝申, 沈建中. 合成孔径聚焦超声成像(一)[J]. 应用声学, 1993, 12(3): 43
12 O'Donnell M, Thomas L J. Efficient synthetic aperture imaging from a circular aperture with possible application to catheter-based imaging[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 1992, 39: 366
13 Zheng C C, Cheng J, Peng H. Ultrasonic synthetic aperture imaging algorithm based on power sample entropy as adaptive weight[J]. Acta Acust., 2017, 42: 109
13 郑驰超, 成 娟, 彭 虎. 次方样本熵自适应加权的超声合成孔径成像算法[J]. 声学学报, 2017, 42: 109
14 Mirzaei M, Asif A, Rivaz H. Virtual source synthetic aperture for accurate lateral displacement estimation in ultrasound elastography[J]. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2021, 68: 1687
doi: 10.1109/TUFFC.2020.3046445
15 Cui W K, Qin K H. Fast 3-D ultrasonic imaging using time-domain synthetic aperture focusing techniques based on circular scan conversions[J]. IEEE Trans. Comput. Imaging, 2018, 4: 632
doi: 10.1109/TCI.6745852
16 Selim H, Trull J, Prieto M D, et al. Fully noncontact hybrid NDT for 3D defect reconstruction using SAFT algorithm and 2D apodization window[J]. Sensors, 2019, 19: 2138
doi: 10.3390/s19092138
17 Hirose S, Nishimoto S, Maruyama T, et al. Improved ultrasonic SAFT imaging of flaws in structures with curved surfaces[J]. AIP Conf. Proc., 2014, 1581: 36
18 Li Y J, Wang Z Y, Zhang Y, et al. Synthetic aperture imaging in cylindrical component using ultrasonic immersion forward vector algorithm[J]. Russ. J. Nondestr. Test., 2020, 56: 397
doi: 10.1134/S106183092005006X
19 Jin H, Chen J, Wu E, et al. Frequency-domain synthetic aperture focusing for helical ultrasonic imaging[J]. J. Appl. Phys., 2017, 121: 134901
doi: 10.1063/1.4979369
20 Scharrer T, Koch A, Fendt K T, et al. Ultrasonic defect detection in multi-material, axis-symmetric devices with an improved synthetic aperture focusing technique (SAFT)[A]. 2012 IEEE International Ultrasonics Symposium[C]. Dresden: IEEE, 2012: 1039
21 Vrana J, SchÖrner K, Mooshofer H, et al. Ultrasonic computed tomography-pushing the boundaries of the ultrasonic inspection of forgings[J]. Steel Res. Int., 2018, 89: 1700448
doi: 10.1002/srin.v89.4
22 Wu S W, Skjelvareid M H, Yang K J, et al. Synthetic aperture imaging for multilayer cylindrical object using an exterior rotating transducer[J]. Rev. Sci. Instrum., 2015, 86: 083703
23 Peng H. Introduction to Ultrasound Imaging Algorithms[M]. Hefei: University of Science and Technology of China Press, 2008: 122
23 彭 虎. 超声成像算法导论[M]. 合肥: 中国科学技术大学出版社, 2008: 122
24 Nikolov S, Jensen J A. Virtual ultrasound sources in high-resolution ultrasound imaging[A]. Proceedings of SPIE 4687, Medical Imaging 2002: Ultrasonic Imaging and Signal Processing[C]. San Diego: SPIE, 2002: 395
25 Zhou Z G, Zhou J H, Zhang K S, et al. Application of synthetic aperture focusing technique to defect quantification for immersion ultrasonic testing[J]. J. Beijing Univ. Aeronaut. Astronaut., 2016, 42: 2017
25 周正干, 周江华, 章宽爽 等. 合成孔径聚焦在水浸超声缺陷定量中的应用[J]. 北京航空航天大学学报, 2016, 42: 2017
[1] 武玉鹏, 张博, 李经明, 张双楠, 吴颖, 王玉敏, 蔡桂喜. 航空发动机整体叶环中纤维断丝超声检测方法[J]. 金属学报, 2020, 56(8): 1175-1184.