Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (2): 127-132    DOI:
Current Issue | Archive | Adv Search |
TRANSITION OF TEXTURE ORIENTATION AND MICROSTRUCTURE DURING CYCLIC PHASE TRANSFORMATION IN Ti SHEET
ZHU Zhishou; GU Jialin; CHEN Nanping(Tsinghua University; Beijing 100084)(Manuscript received 1995-07-20)
Cite this article: 

ZHU Zhishou; GU Jialin; CHEN Nanping(Tsinghua University; Beijing 100084)(Manuscript received 1995-07-20). TRANSITION OF TEXTURE ORIENTATION AND MICROSTRUCTURE DURING CYCLIC PHASE TRANSFORMATION IN Ti SHEET. Acta Metall Sin, 1996, 32(2): 127-132.

Download:  PDF(454KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The formation and inheritance of the transformation texture and microstructure during cyclic α→β→α phase transformation in cold rolled Ti sheet have been investigated by means of the crystalline orientation distribution function (CODF) analysis,the technique of TEM and high temperature X-ray diffraction (HTXRD). The results show that, after 1 cycle of α→β→α phase transformation, the original cold rolling texture component (2116)[2641] and the recrystallization texture component (1013)[1210] are almost completely suppressed, and the [2110]∥ ND transformation fibre texture is formed. And after 3 cycles of α→β→α transformation, the [2110]∥ND fibre texture is inherited, and the rolling texture components, such as (2115)[0110] etc, are partially recovered. Afterα→β→α transformation, the microstructure exhibits the typical Widmanstatten lamellar structure, and is also inherited after 3 cycles of α→β→α transformation. The orientation of β phase at 950 ℃ has been measured by HTXRD and predicted by Burgers' relationship with variant selection.(Correspondent: ZHU Zhishou, P.O. Box No. 15, Beijing Institute of Aeronautical Materials, Beijing 100095)
Key words:  texture      crystalline orientation distribution function      phase transformation      Ti      variant selection     
Received:  18 February 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I2/127

1ZhuZS,GuJL,ChenNPScriptaMetallMater,1994;30:6052BurgersWGPhysicaI,1934;1:5613DaviesGJ,BatemanRMIn:NagashimaSed.,Proc.ofthe6thInterConfonTexturesofMaterials,TokyoJapan:TheIronandSteelInstituteofJapan,1981:1324YutoriTandOgawaR.In:NagashimaSed.,Proc.ofthe6thlnter.ConfonTexturesofMaterials,TokyoJapan:TheIronandSteelInstitateofJapan,1981:6695KallendJS,MorrisPP,DaviesGJ.ActaMetall,1976;24.3616ROeRJ.JApplPhys,1966;37:20697梁志德,徐家帧,王福.织构材料的三维取向分析术,沈阳:东北工学院出版社,1986:238ZhuZS,GuJL,ChenNP.ScriptaMetallMater,inpress9朱知寿.清华大学博士学位论文,199510DunnCG.ActaMetall,1954:2:173|
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[8] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[9] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[10] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[11] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[12] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[13] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[14] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[15] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
No Suggested Reading articles found!