Please wait a minute...
Acta Metall Sin  1996, Vol. 32 Issue (3): 225-230    DOI:
Current Issue | Archive | Adv Search |
DISLOCATION FEATURES IN FeAl ALLOY AFTER SUPERPLASTIC DEFORMATION
LIU Yi;LI Dingqiang; LIN Dongliang(Shanghai Jiaotong University;Shanghai 200030) (Manuscript received 1995-06-28;in revised form 1995-10-12)
Cite this article: 

LIU Yi;LI Dingqiang; LIN Dongliang(Shanghai Jiaotong University;Shanghai 200030) (Manuscript received 1995-06-28;in revised form 1995-10-12). DISLOCATION FEATURES IN FeAl ALLOY AFTER SUPERPLASTIC DEFORMATION. Acta Metall Sin, 1996, 32(3): 225-230.

Download:  PDF(482KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The dislocation features in FeAl alloy after superplastic deformation have been investigated by TEM. The results show that the initial large grains are divided into small grains through the formation of sub-grain boundaries during the superplastic deformation,and the sub-grain boundaries can develop into small grain boundaries by absorbing the dislocations in sub-grains. Meanwhile, the new grains can be further divided by newly formed sub-grain boundaries. After repeating the above process of evolution, the initial large grains are fined and the superplastic deformation keeps going on. Correspondent: LIN Dongliang,professor,Department of Materials Science, Shanghai Jiaotong University,Shang hai 200030
Key words:  FeAl      intermetallic compound      superplastic deformation      dislocation      grainboundary     
Received:  18 March 1996     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1996/V32/I3/225

1LiDingqiang,ShanAidang,LiuYi,LinDongliangScrMetallMater,1995;33:6812LemyHJ,GibsonED,KayserFX.ActaMetall.1967;15:18273黄孝瑛.电子显微镜图像分析原理与应用.北京:宇航出版社,1989:2694HeadAK,HumbleP,ClarebroughLM,MortonAJ,ForwoodCT.ComputedElectronMicrographsandDefectsIdentification,Amsterdam:NorthHolland,1973:1265FourdeuxA,LesbatsP.PhilosMag,1982;A45:816GottsteinG,ChangL,YungHF.MaterSciTechnol,1991;7:1587UmakoshiY,YamaguchiM.PhilosMag,1980;A41:5738UmakoshiY,YamaguchiM,PhilosMag,1981:AM:7119MendirattaMG,KimHK,LipsittHA.MetallTrans,1984;15A:39510BakerI.MaterSciEng,1995;A192//193:1
[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[4] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[5] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[6] DING Zongye, HU Qiaodan, LU Wenquan, LI Jianguo. In Situ Study on the Nucleation, Growth Evolution, and Motion Behavior of Hydrogen Bubbles at the Liquid/ Solid Bimetal Interface by Using Synchrotron Radiation X-Ray Imaging Technology[J]. 金属学报, 2022, 58(4): 567-580.
[7] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[8] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[9] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[10] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[11] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[12] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[13] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[14] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[15] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
No Suggested Reading articles found!