Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (10): 1043-1048    DOI:
Current Issue | Archive | Adv Search |
STRUCTURE DEGRADATION OF HP CRACKING TUBE DURING SERVICE
WU Xinqiang; YANG Yuansheng; ZHAN Qian; HU Zhuangqi(Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)Correspondent:WU Xinqiang; Tel: (024)23843531-55901; Fax: 23891320;E-mail: ysyang@imr.ac.cn
Cite this article: 

WU Xinqiang; YANG Yuansheng; ZHAN Qian; HU Zhuangqi(Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015)Correspondent:WU Xinqiang; Tel: (024)23843531-55901; Fax: 23891320;E-mail: ysyang@imr.ac.cn. STRUCTURE DEGRADATION OF HP CRACKING TUBE DURING SERVICE. Acta Metall Sin, 1998, 34(10): 1043-1048.

Download:  PDF(2090KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The degradation mechanism of cracking tube material during service was discussed on the basis of analysing the structural morphologies of the HP tube used. The resultsreveal that the carbide-free zone and carburized zone in the inner wall of tube is closely associatedwith the spalling and regeneration of surface chide layer, the formation of intergranular attackzone, the diffusion velocity of carbon and alloy elements in matrix and the solution limit of carbonin alloy. The formation and growth of filament catalyzed coke promote the structure degradationof inner wall of cracking tube, while the deposition of non-catalyzed gas coke can alleviate thedegradation degree of tube material to some extent. The cycle operation of coking/decoking isthe main reason for material degradation of cracking tube in service.
Key words:  heat-resistant steel      cracking tube      carbide-free zone      carburization      coking     
Received:  18 October 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I10/1043

1 Hou W T, Honeycombe R W K. Mater Sci Technol,1985; 1: 385
2 Soares G D A, Almeida L H, Silveira T L, May I. Mater Charact, 1992; 29: 387
3 Ibanez R A P, Soares G D A, Almida L H, May I. Mater Charact, 1993;30: 243
4 Shinohara T, Kohchi L, Shibata K, Sugltani J, Tsuchida K. Werkst Korros, 1986; 37: 410
5 Tsai C H, Albrigbt L F. Ind Lab Pyrolyses Symp, 1976; 32: 274
6 Pertillo A, Princip B. Hgdrocarbon Process, 1975; 54: 174
7 Bennett M J, Price J B. J Mater Sci, 1981; 16: 170
8 Hall D J, Hossain M K, Atfinson R F. High Temp High Pressures, 1982; 14: 527
9 Farkas D, Ohla K. Oxid Met,1983; 19(3/4):99
10 Mazandarany F N, Pehlke R D. Wetall Trans,1973; 4A: 2067
11 Small M, Ryba E. Wetall Trans,1981; 12A: 1389
12 Mitchell D R G, Young D J. J Water Sci,1994; 29: 4357
[1] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[2] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[3] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[4] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[5] HUA Yu, CHEN Jianguo, YU Liming, SI Yonghong, LIU Chenxi, LI Huijun, LIU Yongchang. Microstructure Evolution and Mechanical Properties of Dissimilar Material Diffusion-Bonded Joint for High Cr Ferrite Heat-Resistant Steel and Austenitic Heat-Resistant Steel[J]. 金属学报, 2022, 58(2): 141-154.
[6] Chengming ZHENG, Qingchao TIAN. Effect of Alloy Elements on Oxidation Behavior of Piercing Plug Steel[J]. 金属学报, 2019, 55(4): 427-435.
[7] Yin BAI, Zhengdong LIU, Jianxin XIE, Hansheng BAO, Zhengzong CHEN. Effect of Pre-Oxidation Treatment on the Behavior of High Temperature Oxidation in Steam of G115 Steel[J]. 金属学报, 2018, 54(6): 895-904.
[8] Lei HU, Xue WANG, Xiaohui YIN, Hong LIU, Qunshuang MA. Influence of Inter-Pass Temperature on Residual Stress in Multi-Layer and Multi-Pass Butt-Welded 9%Cr Heat-Resistant Steel Pipes[J]. 金属学报, 2018, 54(12): 1767-1776.
[9] Kai ZHANG, Yinli CHEN, Yanhui SUN, Zhijun XU. Effect of H2O(g) on Decarburization of 55SiCr Spring Steel During the Heating Process[J]. 金属学报, 2018, 54(10): 1350-1358.
[10] Xue WANG,Lei HU,Dongxu CHEN,Songtao SUN,Liquan LI. Effect of Martensitic Transformation on Stress Evolution in Multi-Pass Butt-Welded 9%Cr Heat-Resistant Steel Pipes[J]. 金属学报, 2017, 53(7): 888-896.
[11] Dongsong RONG,Yong JIANG,Jianming GONG. EXPERIMENTAL RESEARCH AND THERMODYNAMIC SIMULATION OF LOW TEMPERATURE COLOSSAL CARBURIZATION OF AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2015, 51(12): 1516-1522.
[12] Yawei PENG,Jianming GONG,Dongsong RONG,Yong JIANG,Minghui FU,Guo YU. NUMERICAL ANALYSIS OF LOW-TEMPERATURE SURFACE CARBURIZATION FOR 316L AUSTENITIC STAINLESS STEEL[J]. 金属学报, 2015, 51(12): 1500-1506.
[13] PENG Zhifang DANG Yingying PENG Fangfang. STUDY ON CREEP–RUPTURE PROPERTY ASSESSMENT METHOD FOR 9%—12%Cr FERRITIC HEAT–RESISTANT STEELS[J]. 金属学报, 2010, 46(4): 435-443.
[14] HAN Lizhan CHEN Ruikai GU Jianfeng PAN Jiansheng. BEHAVIOR OF AUSTENITE GRAIN GROWTH IN X12CrMoWVNbN10-1-1 FERRITE HEAT-RESISTANT STEEL[J]. 金属学报, 2009, 45(12): 1446-1450.
[15] Chun-guang Kuai; Zhifang Peng. ELEMENTAL PARTITIONING CHARACTERISTICS AND STABILITY OF EQUILIBRIUM PHASES DURING 450-1200℃ IN T/P91 HEAT-RESISTANT STEEL[J]. 金属学报, 2008, 44(8): 897-900 .
No Suggested Reading articles found!