Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (10): 1061-1067    DOI:
Current Issue | Archive | Adv Search |
INVESTIGATION ON THE DEFORMATION AND ENERGY TRANSFER OF POWDERS DURING MECHANICAL ALLOVING
YANG Junyou; WU Jiansheng; ZENG Zhenpeng(The Open Laboratory of Education Ministry for High Temperature Materials and High Temperature Tests;Shanghai Jiaotong University; Shanghai 200030)Correspondent: YANG Junyou; postdoctoral research;Tel: (021)62812440;E-mail: jggang@ mail.sjtu.edu.cn
Cite this article: 

YANG Junyou; WU Jiansheng; ZENG Zhenpeng(The Open Laboratory of Education Ministry for High Temperature Materials and High Temperature Tests;Shanghai Jiaotong University; Shanghai 200030)Correspondent: YANG Junyou; postdoctoral research;Tel: (021)62812440;E-mail: jggang@ mail.sjtu.edu.cn. INVESTIGATION ON THE DEFORMATION AND ENERGY TRANSFER OF POWDERS DURING MECHANICAL ALLOVING. Acta Metall Sin, 1998, 34(10): 1061-1067.

Download:  PDF(537KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  After analyzing of the collision during the process of ball milling, an anglefactor is introduced, and a theoretical relationship between the physical parameters of powders(such as the deformation and the temperature rise, etc.) and the tecbocal parameters of ballmilling and the angle factor is settled. The temperature rise of powders can be expressed as △Tand the direct and shearing strain are respectively. It showsthe deformation and heat effect are determined by milling parameters, the angle faCtor and thepowder materials. The model in this paper is compared with the Maurice model.
Key words:  mechanical alloying (MA)      collision      deformation      heat effect      ball milling     
Received:  18 October 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I10/1061

1Burgio N,Iasonna N,Magini M,Martelli S,Padella F.Nuovo Cimento,1991;13:459
2Maurice D R, Courtnev T H. intofl 7in,la, 1990; 21A: 189
3杨君友,张同俊,崔 金属学报,1997; 33:381(Yang J Y, Zhang T J, Cui K. Acta Metall Sin, 1997; 33: 381)
4钱伟长,叶开源.弹性力学.北京:科学出版社,1980:297(Qian W C, Ye K Y. Elasticity . Beijing: Science Press, 1980: 297)
5许维德.流体力学.北京:国防工业出版社,1989:4(Xu W D. Fluid Mechanics.Beijing: National Defense Industry Press, 1989: 4)
6杨君友.华中理工大学博士学位论文,1996(Yang J Y. PhD Thesis, Huazhong University of Science and Technology, 1996)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[3] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[4] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[5] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[6] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[7] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[8] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[9] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[10] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[11] LI Min, WANG Jijie, LI Haoze, XING Weiwei, LIU Dezhuang, LI Aodi, MA Yingche. Effect of Y on the Solidification Microstructure, Warm Compression Behavior, and Softening Mechanism of Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2023, 59(3): 399-412.
[12] JI Xiumei, HOU Meiling, WANG Long, LIU Jie, GAO Kewei. Modeling and Application of Deformation Resistance Model for Medium and Heavy Plate Based on Machine Learning[J]. 金属学报, 2023, 59(3): 435-446.
[13] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[14] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[15] SUN Yi, ZHENG Qinyuan, HU Baojia, WANG Ping, ZHENG Chengwu, LI Dianzhong. Mechanism of Dynamic Strain-Induced Ferrite Transformation in a 3Mn-0.2C Medium Mn Steel[J]. 金属学报, 2022, 58(5): 649-659.
No Suggested Reading articles found!