Please wait a minute...
Acta Metall Sin  1998, Vol. 34 Issue (8): 807-812    DOI:
Current Issue | Archive | Adv Search |
STUDY OF THE SURFACE RELIEF EFFECTS ASSOCIATED WITH GRAIN BOUNDARY ALLOTRIOMORPHS BY SCANNING TUNNELING MICROSCOPY
BO Xiangzheng; FANG Hongsheng( Departmetn of Materials Science and Engineering; Tsinghua University; Beijing; 100084)Correspondent: BO Xiangzheng; Tel: (010)62782361; E-mail: fhs - dms tsinghua. edu. cn.
Cite this article: 

BO Xiangzheng; FANG Hongsheng( Departmetn of Materials Science and Engineering; Tsinghua University; Beijing; 100084)Correspondent: BO Xiangzheng; Tel: (010)62782361; E-mail: fhs - dms tsinghua. edu. cn.. STUDY OF THE SURFACE RELIEF EFFECTS ASSOCIATED WITH GRAIN BOUNDARY ALLOTRIOMORPHS BY SCANNING TUNNELING MICROSCOPY. Acta Metall Sin, 1998, 34(8): 807-812.

Download:  PDF(2699KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  In this paper, surface relief effects associated with grain boundary allotriomorph (GBA) in an Fe-0.37C (mass fraction,%) steel were investigated by scanning tunneling microscopy (STM) for the first time. It was discovered that GBA does produce surface reliefs. The surface reliefs originate only from the GBA, not from both the GBA and its slip accommodation which took place in the matrix. The GBA which exhibits the surface relief is only developed into one austenite grain, and the GBA in adjacent austenite does not produce surface relief effects. This means that the GBA/austenite interface is coherent or partially coherent, but the interface between the GBA and the adjacent austenite may be incoherent. The height of surfaCe reliefs is 157-352 nm, and the maximum shape deformation is 0.37. On the broad face of the GBA exist super ledges, whose height is 300 um. The configuration of edge-to- edge sympathetic nucleation is commonly observed in GBAs. All the experimental results indicate that GBA is formed by a sympathetic nucleation-ledgewise growth mechanism.
Key words:  GBA      STM      surface relief      coherent      sympathetic nucleation ledgewise growth     
Received:  18 August 1998     
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y1998/V34/I8/807

1 Dube C A, Aaronson H I, Mehl R F. Rev Met, 1958; 55: 201
2 Aaronson H I. In: Zackey V F, Aaronson H I eds., Decomposition of Anstenite by Diffusional Processes.New York: Interscience Publishers, 1962: 387
3 Aaronson H I, Laird C, Kinsman K R. Phaae Transformations, Metals Park, Ohio: ASM, 1970: 313
4 Watson J D, McDougall P G. Acta MetaIl, 1973; 21: 961
5 Kinsman K R, Eichen E, Aaronson H I. Metall Trans, 1975; 6A: 303
6 Hall M G, Aaronson H I. Metall Moter Trans, 1994; 25A: 1923
7 薄祥正,方鸿生,王家军,王峥华金属学报, 1998; 34: 345(Bo X Z, Fang H S, Wang J J, Wang Z H. Acta Metall Sin, 1998; 34: 345)
8 Christian J W. In: Zackey V F and Aaronson H I eds., Decomposition of Austenite by Diffusional Proscesses.New York: Interscience, 1962: 371
9 Christian J W. Metall Mater Trans, 1994; 25A: 1821
10 Kurdjumow G V, Sachs G. Z Phys, 1939; 64:325
11 Aaronson H I, Furuhara T, Rigsbee J M, Reynolds W T Jr, Howe J M. Metall Trans, 1990; 21A: 2369
12 Furuhara T, Maki T. Metall Trans, 1992; 33: 734
13 Aaronson H I, Russell K C. In: Aaronson H I, Laughlin D E, Sekerka R F, Wayman C M eds., Proc Int Confon Solid-to-Solid Phase fTransformations. Warrendale, PA: TMS-AIME, 1994: 371
14 Binnig G, Rohrer H, Gerber Ch, Weibel E. Phys Rev Lett, 1982; 49: 57
15 Binnig G, Rohrer H. Surf Sci, 1983; 126: 236
16 Yamamoto M, Fuisawa T, Saburi T, Kurumizawa T, Kusao K. Surf Sci, 1992; 266: 289
17 Fang H S, Wang J J, Yang Z G, Li C M, Zheng Y K, Li C X. Metall Mater Trans, 1996; 27A: 1535
18 Wang J J, Fang H S, Zheng Y K, Yang Z G. ISIJ Int, 1995; 35: 992
19 Yang Z G, Fang H S, Wang J J, Li C M, Zheng Y K. Phys Rev, 1995; B52: 7879
20 Swallow E, Bhadeshia H K D H. Mater Sci Technol, 1996; 12: 121
21 Bo X Z, Fang H S, Wang J J. Scri Mater 1997; 37: 555
22 Bradley J R, Rigsbee J M, Aaronson H I. Metall Trans, 1977; 8A: 323
23 Clark H M, Waymun C M. Metall Trans, 1977; 8A: 206
24 Furuhara T, Aaronson H I. Acta Metall Mater, 1991; 39: 2887
25 Furuhara T, Ogawa T, Maki T. Scri Mater 1996; 34: 381
26 Hall M G, Aaronson H I, Kinsman K R. Surf Sci, 1972; 31: 257
27 Russell K C, Hall M G, Kinsman K R, Aaronson H I. Metall Trans, 1974; 5: 1503
28 Howe J M. Metall Mater Trans, 1994; 25A: 1917
29 Aaronson H I, Wells C. Trans AIME 1956; 206: 1216
30 Aaronson H I, Spanos G, Masamura R A, Vardiman T G, Moon D W, Menon E S K, Hall M G. Mater Sci Eng, 1995; B32: 107
[1] SUN Baode, WANG Jun, KANG Maodong, WANG Donghong, DONG Anping, WANG Fei, GAO Haiyan, WANG Guoxiang, DU Dafan. Investment Casting Technology and Development Trend of Superalloy Ultra Limit Components[J]. 金属学报, 2022, 58(4): 412-427.
[2] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[3] WANG Xi,LIU Renci,CAO Ruxin,JIA Qing,CUI Yuyou,YANG Rui. Effect of Cooling Rate on Boride and Room Temperature Tensile Properties of β-Solidifying γ-TiAl Alloys[J]. 金属学报, 2020, 56(2): 203-211.
[4] Xifeng LI, Nannan CHEN, Jiaojiao LI, Xueting HE, Hongbing LIU, Xingwei ZHENG, Jun CHEN. Effect of Temperature and Strain Rate on Deformation Behavior of Invar 36 Alloy[J]. 金属学报, 2017, 53(8): 968-974.
[5] Heng SHAO,Yan LI,Hai NAN,Qingyan XU. RESEARCH ON THE INTERFACIAL HEAT TRANSFER COEFFECIENT BETWEEN CASTING AND CERAMIC SHELL IN INVESTMENT CASTING PROCESS OF Ti6Al4V ALLOY[J]. 金属学报, 2015, 51(8): 976-984.
[6] SUN Chaoyang, SHI Bing, WU Chuanbiao, YE Naiwei, MA Tianjun, XU Wenliang, YANG Jing. HIGH TEMPERATURE CREEP DEFORMATION MECHANISM OF BSTMUF601 SUPERALLOY[J]. 金属学报, 2015, 51(3): 349-356.
[7] Shuai SUN,Daxin E. A NOVEL MODEL BASED ON VISCOELASTIC THEO- RY TO PREDICT THE TIME-DEPENDENT SPRINGBACK FOR DP600 STEEL SHEET[J]. 金属学报, 2015, 51(11): 1356-1364.
[8] DONG Qiyi, SHEN Leinuo, CAO Feng, JIA Yanlin, WANG Mingpu. STUDY OF THE COARSENING AND HARDENING BEHAVIORS OF COHERENT g-Fe PARTICLES IN Cu-2.1Fe ALLOY[J]. 金属学报, 2014, 50(10): 1224-1230.
[9] CHEN Yuyong, JIA Yi, XIAO Shulong, TIAN Jing, XU Lijuan. REVIEW OF THE INVESTMENT CASTING OF TiAl-BASED INTERMETALLIC ALLOYS[J]. 金属学报, 2013, 49(11): 1281-1285.
[10] ZHUO Haiou TANG Jiancheng YE Nan. Cu–Y2O3 COMPOSITES PREPARED BY LIQUID PHASE IN SITU REACTION[J]. 金属学报, 2012, 48(12): 1474-1478.
[11] SU Bin HAN Zhiqiang ZHAO Yongrang SHEN Bingzhen ZHANG Lianzhen LIU Baicheng. CA MODELING OF PHASE TRANSFORMATION IN ASTM A216 WCA CAST STEEL DURING SOLIDIFICATION AND COOLING PROCESS[J]. 金属学报, 2011, 47(11): 1388-1395.
[12] YANG Yujuan YAN Biao. THREE DIMENSIONAL MULTI-PHASE FIELD SIMULATION OF GROWTH OF EUTECTIC CBr4-C2Cl6  ALLOY
II. Effect of Lamellar Spacing on Morphology Evolution
[J]. 金属学报, 2010, 46(7): 787-793.
[13] KE Changbo MA Xiao ZHANG Xinping. PHASE FIELD SIMULATION OF GROWTH KINETICS OF COHERENT Ni4Ti3 PRECIPITATE IN NiTi SHAPE MEMORY ALLOY[J]. 金属学报, 2010, 46(1): 84-90.
[14] LIN Shuangping HUANG Hui WEN Shengping NIE Zuoren. TEM OBSERVATION OF THE Al3Er PHASE DURING HOMOGENIZING OF THE 5083 ALLOY WITH Er ADDITION[J]. 金属学报, 2009, 45(8): 978-982.
[15] WU Jing LIU Xinxin GU Xinfu DAI Fuzhi YANG Haitao ZHANG Wenzheng. QUANTITATIVE ANALYSIS FOR THE DISPLACEMENT OF TENT–SHAPED SURFACE RELIEF OF LATH MARTENSITE IN Fe–BASED ALLOY[J]. 金属学报, 2009, 45(12): 1425-1434.
No Suggested Reading articles found!