Please wait a minute...
Acta Metall Sin  2015, Vol. 51 Issue (3): 349-356    DOI: 10.11900/0412.1961.2014.00293
Current Issue | Archive | Adv Search |
HIGH TEMPERATURE CREEP DEFORMATION MECHANISM OF BSTMUF601 SUPERALLOY
SUN Chaoyang1(), SHI Bing1, WU Chuanbiao1, YE Naiwei2, MA Tianjun3, XU Wenliang3, YANG Jing1
1 School of Mechanical and Engineering, University of Science and Technology Beijing, Beijing 100083
2 Ningbo Baoxin Stainless Steel Co. Ltd., Ningbo 315807
3 Special Steel Business Unit, Baoshan Iron & Steel Co. Ltd., Shanghai 200940
Cite this article: 

SUN Chaoyang, SHI Bing, WU Chuanbiao, YE Naiwei, MA Tianjun, XU Wenliang, YANG Jing. HIGH TEMPERATURE CREEP DEFORMATION MECHANISM OF BSTMUF601 SUPERALLOY. Acta Metall Sin, 2015, 51(3): 349-356.

Download:  HTML  PDF(3313KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Muffle tube is the core component in a large bright annealing muffle furnace. A lot of defects will be found on the muffle tube after long-term application under high temperature, self-weight and uneven temperature conditions, and among them creep deformation is serious, directly affecting the usability and life expectancy of muffle tube. High temperature creep and rupture properties are important indicators of the muffle tube material, and BSTMUF601 nickel-based superalloy materials are commonly used in a muffle tube. Because of good oxidation resistance at high temperatures, high strength and good creep resistance, nickel-base superalloy materials are taken seriously especially its creep mechanism. For different alloys or alloys in different conditions, the conclusions about creep mechanism are different. So the research of each alloy is necessary. Creep tests of BSTMUF601 superalloy for elevated temperature were carried out under different temperatures and stresses. The creep deformation characteristic of BSTMUF601 superalloy was investigated based on the creep curves. And then, a creep constitutive model for elevated temperature was proposed by introducing a modified θ projection method, which contained three stages of creep. The predicted results by using the model are in good agreement with the experimental results. The average relative error of the model fitted is 1.86%. Compared with the model ignored the second stage of creep and the model ignored the first stage of creep, the average relative error is reduced 0.10% and 6.02%, respectively. It is indicated that the model will be a wider range of application whereas the prediction precision is not reduced. Dislocation structure and its distribution for creep specimens and void evolution for creep rupture specimens have been carried by analyzing the microscopic structure. The results show that the creep stress index is close to 5 during the steady-state creep stage for different temperatures. The dislocation climb mechanism controlls the creep deformation process. There is no stacking fault or microtwin observed in phase or matrix. Cracks originate from the cavities at grain boundary and along the boundary, which lead to fracture. Grain boundary fracture is the main creep rupture mechanism.

Key words:  BSTMUF601 alloy      creep deformation      steady creep rate      creep rupture     
ZTFLH:  TG142.1  
Fund: Supported by National Natural Science Foundation of China (Nos.50831008 and 51105029) and National Science and Technology Major Project (No.2014ZX04014-51)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2014.00293     OR     https://www.ams.org.cn/EN/Y2015/V51/I3/349

Fig.1  Microstructures of BSTMUF601 alloy before creep (a) and crept at 1095 ℃ under applied stress of 5.7 MPa (b)
Fig.2  Experimental and predicted creep curves of BSTMUF601 alloy crept at 1095 ℃ (a), 980 ℃ (b) and 870 ℃ (c) under different applied stresses
Fig.3  Predicted creep curves with different models compared with experimental results of BSTMUF601 alloy crept at 1095 ℃ under applied stress of 7.7 MPa
Creep temperature Creep stress Steady creep rate
MPa 10-2 h-1
1095 5.7 0.00855
1095 6.7 0.02180
1095
980
980
980
7.7
12.4
14.4
16.4
0.03690
0.06800
0.10000
0.25000
870 20.0 0.01300
870 32.0 0.18000
870 40.0 0.45000
Table 1  Steady-state creep rates of BSTMUF601 alloy at different conditions
Fig.4  lnε?s - lnσ curves of BSTMUF601 alloy at differenttemperatures(σ—appliedstress, ε?s —seady-state creep rate, n—creep stress index)
Fig.5  TEM images of BSTMUF601 alloy crept at 1095 ℃ under applied stress of 5.7 MPa

(a) dislocation in γ matrix
(b) dislocation tangle
(c) dislocation pile-up around γ′ particles
(d) dislocation climb

Fig.6  OM image of BSTMUF601 alloy crept at 870 ℃ under applied stress of 32 MPa after creep rupture
Fig.7  Morphologies on the longitudinal (a, b) and cross (c, d) sections with cavity nucleation (a, c) and microcrack (b, d) at grain boundaries near the fracture of BSTMUF601 alloy crept at 1095 ℃ under applied stress of 7.7 MPa
[1] Ye N W, Yang A, Sun C Y. Metall Equip, 2010; 179(1): 40
(叶乃威, 杨 安, 孙朝阳. 冶金设备, 2010; 179(1): 40)
[2] Inoue T, Tanaka K, Adachi H, Kishida K, Okamoto N L, Inui H, Yokokawa T, Harada H. Acta Mater, 2009; 57: 1078
[3] Raujol S, Pettinari F, Locq D, Caron P, Coujou A, Clément N. Mater Sci Eng, 2004; A387-389: 678
[4] Kovarik L, Unocic R R, Li J, Sarosi P, Shen C, Wang Y, Mills M J. Prog Mater Sci, 2009; 54: 839
[5] Zhang G Y, Guo J T, Zhang H. Chin J Nonferrous Met, 2006; 16:1882
(张光业, 郭建亭, 张 华. 中国有色金属学报, 2006; 16: 1882)
[6] Yu X F, Tian S G, Wang M G, Zhang S, Lu X D, Cui S S. Mater Sci Eng, 2009; A499: 352
[7] Qi L C, Li Z X, Huang X. Rare Met, 2006; 30(special issue): 18
(齐立春, 李臻熙, 黄 旭. 稀有金属, 2006; 30(专辑): 18)
[8] Murakumo T, Kobayashi T, Koizumi Y, Harada H. Acta Mater, 2004; 52: 3737
[9] Xu L, Chu Z K, Cui C Y, Gu Y F, Sun X F. Acta Metall Sin, 2013; 49: 863
(徐 玲, 储昭贶, 崔传勇, 谷月峰, 孙晓峰. 金属学报, 2013; 49: 863)
[10] Liu L R, Jin T, Zhao N R, Wang Z H, Sun X F, Guan H R, Hu Z Q. Acta Metall Sin, 2005; 41: 1215
(刘丽荣, 金 涛, 赵乃仁, 王志辉, 孙晓峰, 管恒荣, 胡壮麒. 金属学报, 2005; 41: 1215)
[11] Yuan Y, Gu Y F, Cui C Y, Osada T, Tetsui T, Yokokawa T, Harada H. Mater Sci Eng, 2011; A528: 5106
[12] Viswanathan G B, Sarosi P M, Whitis D H, Mills M J. Mater Sci Eng, 2005; A400-401: 489
[13] Kim W G, Yin S N, Kim Y W, Chang J H. Eng Fract Mech, 2008; 75: 4985
[14] Liu J J, Gong J M, Jiang Y, Shen L M, Geng L Y, Yin J F. Mater Mech Eng, 2011; 35(1): 89
(刘建杰, 巩建鸣, 姜 勇, 沈利民, 耿鲁阳, 尹基奉. 机械工程材料, 2011; 35(1): 89)
[15] Prasad S C, Rao I J, Rajagopal K R. Acta Mater, 2005; 53: 669
[16] Yan J L, Sun Y S, Xue F, Tao W J. Acta Metall Sin, 2008; 44: 1354
(晏井利, 孙扬善, 薛 烽, 陶卫建. 金属学报, 2008; 44: 1354)
[17] Ismael A M, Ahmed H, Johannes R. Mater Sci Eng, 2009; A504: 40
[18] Spigarelli S, Evangelista E, Cucchieri S. Mater Sci Eng, 2004; A387-389: 702
[19] Li X X, Xia C Q, Qi Y L, Wang Z H, Niu G S, Sun W. Rare Met Mater Eng, 2013; 42: 1901
(李学雄, 夏长清, 戚延龄, 王志辉, 牛国帅, 孙 玮. 稀有金属材料与工程, 2013; 42: 1901)
[20] Hou J S, Zhang Y L, Guo J T, Ji G, Zhou L Z, Ye H Q. Acta Metall Sin, 2004; 40: 579
(侯介山, 张玉龙, 郭建亭, 冀 光, 周兰章, 叶恒强. 金属学报, 2004; 40: 579)
[21] Cui C Y, Guo J T, Qi Y H, Ye H Q. Acta Metall Sin, 2002; 38: 342
(崔传勇, 郭建亭, 齐义辉, 叶恒强. 金属学报, 2002; 38: 342)
[22] Tian S G, Xie J, Zhou X M, Qian B J, Lun J W, Yu L L, Wang W X. Mater Sci Eng, 2011; A528: 2076
[23] Xiao X, Zhou L Z, Guo J T. Acta Metall Sin, 2001; 37: 1159
(肖 璇, 周兰章, 郭建亭. 金属学报, 2001; 37: 1159)
[24] Tian S G, Su Y, Qian B J, Yu X F, Liang F S, Li A A. Mater Des, 2012; 37: 236
[25] Caron P, Henderson P J, Khan T, McLean M. Scr Metall, 1986; 20: 875
[26] Ai S H. Acta Metall Sin, 1992; 28: 126
(艾素华. 金属学报, 1992; 28: 126)
[1] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[2] Guodong HU, Pei WANG, Dianzhong LI, Yiyi LI. Precipitate Evolution in a Modified 25Cr-20Ni Austenitic Heat Resistant Stainless Steel During CreepRupture Test at 750 ℃[J]. 金属学报, 2018, 54(11): 1705-1714.
[3] LIN Huiwen, LIU Jide, ZHOU Yizhou, JIN Tao, SUN Xiaofeng. INFLUENCE OF Pt ON THE CREEP RUPTURE PROPERTIES OF Ni-BASED SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 2015, 51(1): 77-84.
[4] WANG Xue, YU Shumin, REN Yaoyao, LIU Hong, LIU Hongwei, HU Lei. LAVES PHASE EVOLUTION IN P92 STEEL DURING AGEING[J]. 金属学报, 2014, 50(10): 1195-1202.
[5] PENG Zhifang, DANG Yingying,PENG Fangfang. EFFECT OF CARBON AND NIOBIUM CONTENTS ON PHASE PARAMETERS AND CREEP RUPTURE TIME AT 650 ℃ FOR TP347HFG STEEL[J]. 金属学报, 2012, 48(4): 450-454.
[6] LIU Xiaoyan PAN Qinglin LU Zhilun CAO Sufang HE Yunbin LI Wenbin. CREEP BEHAVIOR OF Al-Cu-Mg-Ag HEAT-RESISTANT ALLOY AT ELEVATED TEMPERATURE[J]. 金属学报, 2011, 47(1): 53-60.
[7] ZHAO Jie LI Dongming FANG Yuanyuan. STATISTICAL ANALYSIS AND RELIABILITY PREDICTION OF CREEP RUPTURE PROPERTY FOR T91/P91 STEEL[J]. 金属学报, 2009, 45(7): 835-839.
[8] LIU Lirong; JIN Tao; ZHAO Nairen; WANG Zhihui; SUN Xiaofeng; GUAN Hengrong; HU Zhuangqi. Creep deformation mechanism in a Ni base single crystal superalloy[J]. 金属学报, 2005, 41(11): 1215-1220 .
[9] ZHOU Qing; MA Zongyi; ZHAO Jie; BI Jing; ZHU Shijie; WANG Fugang (Materials Engineering Department; Dalian University of Technology; Dalian 116024)(Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015). CREEP DEFORMATION AND FRACTURE OF DISPERSOIDS AND SiC PARTICULATES REINFORCED Al BASE COMPOSITES[J]. 金属学报, 1998, 34(1): 107-112.
[10] LI Pei'en;YE Baorui;ZHANG Junshan;WANG Fugang;JIN Junze Shanghai Jiaotong Universtity; Da lian University of Technology. EFFECT OF INTERGRANULAR CARBIDES ON CREEP RUPTURE PROPERTIES OF Fe-15Cr-25Ni ALLOY[J]. 金属学报, 1992, 28(1): 48-50.
[11] ZHANG Yuanhu;XIANG Yi;SUN Jian;HU Gengxiang;LI Tiefan Shanghai Jiaotong University Institute of Metallic Corrosion and protection Academia Sinica; Shenyang. CREEP AND FRACTURE FEATURE OF SUPERALLOYS WITH DIFFERENT BOUNDARY MICROSTRUCTURES IN SULPHUR CONTAMINATED ENVIRONMENT[J]. 金属学报, 1990, 26(5): 44-49.
No Suggested Reading articles found!