Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (11): 1349-1355    DOI:
论文 Current Issue | Archive | Adv Search |
CREEP CHARACTERISTICS OF A Ni BASE SINGLE CRYSTAL SUPERALLOY WITH [011] ORIENTATION
SHUI Li1;2);  JIN Tao1);   HU Zhuangqi1)
1) Institute of Metal Research; Chinese Academy of Sciences; Shenyang 110016\
2) School of Materials Science and Engineering; Shenyang Ligong University; Shenyang 110168
Cite this article: 

SHUI Li JIN Tao HU Zhuangqi. CREEP CHARACTERISTICS OF A Ni BASE SINGLE CRYSTAL SUPERALLOY WITH [011] ORIENTATION. Acta Metall Sin, 2009, 45(11): 1349-1355.

Download:  PDF(1101KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The creep behavior of a Ni base single crystal superalloy with [011] orientation under three conditions of temperature and stress level has been investigated. Creep deformation of the tested alloy occurs largely through dislocation activity in the γ matrix channel. Shearing of the γ´ precipitates is observed, while at higher temperature, this does not occur until late in life by means of the passage of superpartial dislocation.  At lower temperature (750 ℃) and high stress level, shearing of the  γ´ precipitates is observed in the relatively early creep through the passage of 1/3<112> dislocation, which leaves superlattice stacking faults (SSFs) in the precipitates. The creep behavior is closely related to microstructure evolution, the creep curve at 750 ℃ exhibits higher primary and steady creep rates, and thereby the creep life is shorter. Under the condition of 870 ℃ and 500 MPa, the steady-stage creep does not appear, it is suggested that the creep life is greatly influenced by the inhomogeneous slip band. At higher temperature and lower stress, such as 980 ℃ and 200 MPa, the alloy has longer creep life and lower steady creep rate. Observation of the dislocation configuration shows that the hexagonal dislocation network appears on the  γ/ γ´ interface at the early creep stage, the regular and denser dislocation networks can inhibit dislocation cutting into  γ´ phase and enhance the resistance of dislocation movement. In the later stage, $\gamma'$ precipitates are sheared by dislocation, which leads to an acceleration of creep rate.

Key words:  [011] orientation Ni base single crystal      tensile creep      dislocation     
Received:  25 May 2009     
ZTFLH: 

TG132.3

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I11/1349

[1] Knowles D M, Chen Q Z. Mater Sci Eng, 2003; A356: 352
[2] Feller–Kniepmeier M, Kuttner T. Acta Metall Mater, 1994; 42: 3167
[3] Sass V, Glatzel U, Feller–Kniepmeier M. In: Kissinger R D, Deye D J, Anton D L, Cetel A D, Nathal M V, Ploolck T M, Woodford D A, eds, Superalloy 1996, Metal Park: TMS, 1996: 283
[4] Mackay R A, Maier R D. Metall Trans, 1982; 13A: 1747
[5] Liu J L, Jin T, Zhang J H, Hu Z Q. Acta Metall Sin, 2001; 37: 1233
(刘金来, 金涛, 张静华, 胡壮麒. 金属学报, 2001; 37: 1233)

[6] Caron P, Henderson P J, Khan T, McLean M. Scr Metall, 1986; 20: 875
[7] Muller L, Glatzel U, Feller–Kniepmeier M. Acta Metall Mater, 1992; 40: 1321
[8] Drew G L, Reed R C. In: Green K A, Pollock T M, Harada H, Howson T E, Schirra J J, Walston S, eds., Superalloys 2004, Matal Park: TMS, 2004: 127
[9] Kuttner T, Feller–Kniepmeier M. Mater Sci Eng, 1994; A188: 147
[10] Nitz A, Lagerpusch U, Nembactn E. Acta Mater, 1998; 46: 4769
[11] SherryA H, Pilkington R. Mater Sci Eng, 1993; A172: 51
[12] Gunturi S S K, MacLachlan D W, Knowles D M. Mater Sci Eng, 2000; A289: 289

[1] HAN Weizhong, LU Yan, ZHANG Yuheng. Mechanism of Ductile-to-Brittle Transition in Body-Centered-Cubic Metals:A Brief Review[J]. 金属学报, 2023, 59(3): 335-348.
[2] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[3] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[4] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[5] ZHENG Shijian, YAN Zhe, KONG Xiangfei, ZHANG Ruifeng. Interface Modifications on Strength and Plasticity of Nanolayered Metallic Composites[J]. 金属学报, 2022, 58(6): 709-725.
[6] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[7] AN Xudong, ZHU Te, WANG Qianqian, SONG Yamin, LIU Jinyang, ZHANG Peng, ZHANG Zhaokuan, WAN Mingpan, CAO Xingzhong. Interaction Mechanism of Dislocation and Hydrogen in Austenitic 316 Stainless Steel[J]. 金属学报, 2021, 57(7): 913-920.
[8] LAN Liangyun, KONG Xiangwei, QIU Chunlin, DU Linxiu. A Review of Recent Advance on Hydrogen Embrittlement Phenomenon Based on Multiscale Mechanical Experiments[J]. 金属学报, 2021, 57(7): 845-859.
[9] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[10] LIANG Jinjie, GAO Ning, LI Yuhong. Interaction Between Interstitial Dislocation Loop and Micro-Crack in bcc Iron Investigated by Molecular Dynamics Method[J]. 金属学报, 2020, 56(9): 1286-1294.
[11] LI Meilin, LI Saiyi. Motion Characteristics of <c+a> Edge Dislocation on the Second-Order Pyramidal Plane in Magnesium Simulated by Molecular Dynamics[J]. 金属学报, 2020, 56(5): 795-800.
[12] LI Yizhuang,HUANG Mingxin. A Method to Calculate the Dislocation Density of a TWIP Steel Based on Neutron Diffraction and Synchrotron X-Ray Diffraction[J]. 金属学报, 2020, 56(4): 487-493.
[13] Qingdong XU, Kejian LI, Zhipeng CAI, Yao WU. Effect of Pulsed Magnetic Field on the Microstructure of TC4 Titanium Alloy and Its Mechanism[J]. 金属学报, 2019, 55(4): 489-495.
[14] Yubi GAO, Yutian DING, Jianjun CHEN, Jiayu XU, Yuanjun MA, Dong ZHANG. Evolution of Microstructure and Texture During Cold Deformation of Hot-Extruded GH3625 Alloy[J]. 金属学报, 2019, 55(4): 547-554.
[15] Liqun CHEN, Zhengchen QIU, Tao YU. Effect of Ru on the Electronic Structure of the [100](010) Edge Dislocation in NiAl[J]. 金属学报, 2019, 55(2): 223-228.
No Suggested Reading articles found!