Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (11): 1356-1363    DOI:
论文 Current Issue | Archive | Adv Search |
EFFECTS OF ENVIRONMENTAL MEDIA ON HIGH CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIORS OF STRUCTURAL STEEL 40Cr
QIAN Gui'an;  HONG Youshi
State Key Laboratory of Nonlinear Mechanics; Institute of Mechanics; Chinese Academy of Sciences; Beijing 100190
Cite this article: 

QIAN Gui'an HONG Youshi. EFFECTS OF ENVIRONMENTAL MEDIA ON HIGH CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIORS OF STRUCTURAL STEEL 40Cr. Acta Metall Sin, 2009, 45(11): 1356-1363.

Download:  PDF(1380KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Very-high-cycle fatigue of metallic materials is commonly regarded as fatigue failure occurs at stress levels below conventional fatigue limit and the relevant fatigue lives are above 107 cyc. Rotary bending fatigue tests for a structural steel 40Cr were performed in laboratory air, fresh water and 3.5\%NaCl aqueous solution, respectively, to investigate the influence of environmental media on fatigue behaviors of the steel in high cycle and very-igh-cycle fatigue regimes. The results show that the fatigue strength of the steel in water is remarkably degraded compared with that in air, and the fatigue strength in 3.5%NaCl solution is even lower than that in water. The fracture surface observations show that for the specimens tested in water and 3.5%NaCl solution, multiple crack originations exist and cracks propagate along grain boundary with widespread secondary cracks in their steady propagation period.

Key words:  structural steel 40Cr      very-high-cycle fatigue      environmental media      fatigue strength      fatigue crack initiation     
Received:  07 May 2009     
ZTFLH: 

TG111.8

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.10772178, 10721202 and 10532070) and  Knowledge Innovation Program of the Chinese Academy of Sciences (No. KJCX2-YW-L07)

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I11/1356

[1] Stanzl S E, Tschegg E K, Mayer H. Int J Fatigue, 1986; 8: 195
[2] Kikukawa M, Ohji K, Ogura K. Trans ASME, 1965; 87D: 857
[3] Naito T, Ueda H, Kikuchi M. J Soc Materi Sci Jpn, 1983; 32: 1162
[4] Naito T, Ueda H, Kikuchi M. Metall Mater Trans, 1984; 15A: 1431
[5] Takeuchi E, Furuya Y, Nagashima N, Matsuoka S. Fatigue Fract Eng Mater Struct, 2008; 31: 599
[6] Ranc N, Wagner D, Paris P C. Acta Mater, 2008; 56: 4012
[7] Marines–Garcia I, Paris P C, Tada H, Bathias C, Lados D. Eng Fract Mech, 2008; 75: 1657

[8] Liu Y B, Yang Z G, Li Y D, Shen S M, Li S X, HuiWJ, Weng Y Q. Mater Sci Eng, 2008; A497: 408
[9] Gonzalo M, Dominguez A. Mech Mater, 2008; 40: 636
[10] Makino T. Int J Fatigue, 2008; 30: 1409
[11] Akiniwa Y, Stanzl–Tschegg S, Mayer H, Wakita M, Tanaka K. Int J Fatigue, 2008; 30: 2057
[12] Sohar C R, Betzwar–Kotas A, Gierl C,Weiss B, Danninger H. Int J Fatigue, 2008; 30: 1137
[13] Nakajima M, Tokaji K, Itoga H, Ko H N. Fatigue Fract Eng Mater Struct, 2003; 26: 1113
[14] Tokaji K, Ko H N, Nakajima M, Itoga H. Mater Sci Eng, 2003; A345: 197
[15] Furuya Y, Matsuoka S, Abe T, Yamaguchi K. Scr Mater, 2002; 46: 157
[16] Shiozawa K, Lu L. Fatigue Fract Eng Mater Struct, 2002; 25: 813
[17] Itoga H, Tokaji K, Nakajima M, Ko H N. Int J Fatigue, 2003; 25: 379
[18] Shiozawa K, Morii Y, Nishino S, Lu L. Int J Fatigue, 2006; 28: 1521
[19] Sakai T, Sato Y, Oguma N. Fatigue Fract Eng Mater Struct, 2002; 25: 765
[20] Zhou C E, Qian G A, Hong Y S. Key Eng Mater, 2006; 324–325: 1113
[21] Wang Q Y, Berard J Y, Rathery S, Bathias C. Fatigue Fract Eng Mater Struct, 1999; 22: 673
[22] McMahon Jr C J. Eng Fract Mech, 2001; 68: 773
[23] Taha A, Sofronis P. Eng Fract Mech, 2001; 68: 803
[24] Nagumo M, Shimura H, Chaya T, Hayashi H, Ochiai I. Mater Sci Eng, 2003; A348: 192
[25] Nagao A, Kuramoto S, Ichitani K, Kanno M. Scr Mater, 2001; 45: 1227
[26] Shipilov S A. Scr Mater, 2002; 47: 301

[27] Page R A, Gerberich W W. Met Trans, 1982; 13A: 305

[1] ZHANG Zhefeng, LI Keqiang, CAI Tuo, LI Peng, ZHANG Zhenjun, LIU Rui, YANG Jinbo, ZHANG Peng. Effects of Stacking Fault Energy on the Deformation Mechanisms and Mechanical Properties of Face-Centered Cubic Metals[J]. 金属学报, 2023, 59(4): 467-477.
[2] Hui ZHANG, Yanxia DU, Wei LI, Minxu LU. Investigation on AC-Induced Corrosion Behavior and Product Film of X70 Steel in Aqueous Environment with Various Ions[J]. 金属学报, 2017, 53(8): 975-982.
[3] Xiaolong LIU,Chengqi SUN,Yantian ZHOU,Youshi HONG. EFFECTS OF MICROSTRUCTURE AND STRESS RATIO ON HIGH-CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(8): 923-930.
[4] XIE Jijia HONG Youshi. EXPERIMENTAL INVESTIGATION ON FATIGUE BEHAVIOR OF NANOCRYSTALLINE NICKEL[J]. 金属学报, 2009, 45(7): 844-848.
[5] ZHANG Yongjian HUI Weijun XIANG Jinzhong DONG Han WENG Yuqing . EFFECT OF GRAIN SIZE ON ULTRA--HIGH--CYCLE FATIGUE PROPERTIES OF 42CrMoVNb STEEL[J]. 金属学报, 2009, 45(7): 880-886.
[6] HONG Youshi ZHAO Aiguo QIAN Gui'an. ESSENTIAL CHARACTERISTICS AND INFLUENTIAL FACTORS FOR VERY--HIGH--CYCLE FATIGUE BEHAVIOR OF METALLIC MATERIALS[J]. 金属学报, 2009, 45(7): 769-780.
[7] CHEN Shuming LI Yongde LIU Yangbo YANG Zhenguo LI Shouxin ZHANG Zhefeng. FATIGUE STRENGTHS OF THE 54SiCr6 STEEL UNDER DIFFERENT CYCLIC LOADING CONDITIONS[J]. 金属学报, 2009, 45(4): 428-433.
[8] WANG Xishu; LIANG Feng; ZENG Yanping; XIE Xishan. SEM IN SITU OBSERVATIONS TO THE EFFECTS OF INCLUSIONS ON INITIATION AND PROPAGATION OF THE LOW CYCLIC FATIGUE CRACK IN SUPER STRENGTH STEEL[J]. 金属学报, 2005, 41(12): 1272-1276 .
[9] CUI Yuyou; XIANG Hongfu; JIA Qing; YANG Rui. Effects of Thermal Exposure on the Tensile and Fatigue Properties of Cast Ti—47Al—2Cr—2Nb--0.15B Alloy[J]. 金属学报, 2005, 41(1): 108-.
[10] YANG Zhenguo; ZHANG Jiming; LI Shouxin. FATIGUE BEHAVIOR OF FINE--GRAINED HIGH STRENGTH STEEL 42CrMoVNb[J]. 金属学报, 2004, 40(4): 367-372 .
[11] II. Fatigue Crack Initiation and Early Growth HU Yunming; WANG Zhongang (State Key Laboratory for Fatigue and Fracture of Materials; Institute ofMetal Research; Chinese Academy of Sciences; Shenyang 110015) (Manuscript received 1996-09-12; in revised form 1997-03-07). CYCLIC DEFORMATION BEHAVIOR AND FATIGUE CRACK INITIATION IN COPPER BICRYSTALS[J]. 金属学报, 1997, 33(8): 824-830.
[12] FENG Zhongxin; ZHANG Jianzhong; YANG Jianjun; CHEN Xinzeng 1)Xi'an Jiaotong University; Xi'an 710049 2) Ningbo College; Ningbo 315010(Manuscript received 1 995-06-23; in revised form 1 995-09- 1 8). EFFECT OF PLASTIC DEFORMATION PROPAGATION ON FATIGUE BEHAVIOUR OF METALS UNDER CYCLIC LOADING[J]. 金属学报, 1996, 32(3): 261-264.
[13] FENG Zhongxin(Xi'an Jiaotong University);ZHANG Jianzhong;CHEN Hinzeng(Ningbo College)(Manuscript received 5 October;1993; in revised form 4 January;1994). SURFACE ROLLING STRENGTHENING OF Mg ALLOY ZMl[J]. 金属学报, 1994, 30(9): 422-426.
[14] WANG Dezun; LIU Jun (Harbin Institute of Technology); YU Weicheng; WANG Zhongguang(State Key Laboratory for Fatigue and Fracture of Materials; Institute of Metal Research; Chinese Academy of Sciences); YAO Zhongkai(Harbin Institute of Technology)(Manuscript received 23 April; 1993). FATIGUE STRENGTH OF EXTRUDED SiC_W/ LD_2 COMPOSITE AND ITS INFLUENCING FACTORS[J]. 金属学报, 1994, 30(4): 176-180.
[15] LING Chao;ZHANG Baofa;ZHENG Xiulin Northwestern Polytechnical University; Xi'an. METHOD FOR PREDICTING FATIGUE CRACKINITIATION LIFE OF ELEMENTS SUBJECTED TOCEH UNDER VARIABLE-AMPLITUDE LOADING[J]. 金属学报, 1991, 27(1): 75-77.
No Suggested Reading articles found!