Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (8): 983-987    DOI:
论文 Current Issue | Archive | Adv Search |
PREPARATION OF ALUMINIDE COATINGS ON HR-2 STAINLESS STEEL
ZHANG Guikai1; LI Ju1; CHEN Chang'an1; DOU Sanping1; LING Gouping2
1. National Key Laboratory of Surface Physics; Mianyang 621907
2. Zhejiang University; Hangzhou 310027
Cite this article: 

ZHANG Guikai LI Ju CHEN Chang'an DOU Sanping LING Gouping. PREPARATION OF ALUMINIDE COATINGS ON HR-2 STAINLESS STEEL. Acta Metall Sin, 2009, 45(8): 983-987.

Download:  PDF(2227KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The aluminized coating has been widely applied on structural materials in fusion reactors as a tritium permeation barrier (TPB). In present study, we proposed a new two-step method for preparing an aluminized coating on HR-2 stainless steel: room temperature molten salt electroplating followed by heat treating at 500 and 700 ℃ in air. In the electroplating process, aluminum deposition from AlCl3/EMIC to the surface of HR-2 stainless steel was performed with a deposition rate of\linebreak 15 μm/h at 25 ℃ under the protection of argon gas. This method permits coating of large complex shapes that have few blind areas. The coating microstructure has been characterized by optical microscope (OM), scanning electronic microscope (SEM), energy dispersive spectroscope (EDS) and X-ray diffraction (XRD). These results show that after heat treated at 500 ℃ for 10 h, the coating thickness is about 10-15 μm consisting of two distinct layers with a clear interface between the coating and substrate. however, after heat treated at 700 ℃ for 2 h, the coating thickness is changed to about 10-13 μm and it consists of an external (Fe, Cr, Mn and Ni)2Al5 layer, inner (Fe, Cr, Mn and Ni)Al layer and transitional (Fe, Cr, Mn and Ni)3Al layer. No clear interface between the coating and substrate and defects and cracks in the coating were observed.

Key words:  aluminized coating      HR-2 stainless steel      ambient temperature chloroaluminate melts plating      heat treatment     
Received:  01 December 2008     
ZTFLH: 

TG174.455

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I8/983

[1] Benamati G, Chabrol C, Perujo A, Rigal E, Glasbrenner H. J Nucl Mater, 1999; 271–272: 391
[2] Konys J. ITER TBM Project Meeting. February 23–25, 2004, Los Angeles: UCLA, 2004
[3] Aiello A, Ciampichetti A, Benamati G. J Nucl Mater, 2004; 329–333: 1398
[4] Wang P X, Song J S. Penetrate Behaviors of Helium and Tritium Permeations in Materials. Beijing: National defence industry press, 2002: 20
(王佩璇, 宋家树. 材料中的氦及氚渗透. 北京: 国防工业出版社, 2002: 20)
[5] Voudoris N, Angelopoulos G N. High Temp Mater Proc, 1998; 2: 165
[6] Li T F. High Temperature Oxidation and Hot Corrosion Behaviors of Metals. Beijing: Chemical industry press, 2003: 270
(李铁藩. 金属高温氧化和热腐蚀. 北京: 化学工业出版社, 2003: 270)
[7] Kung S C, Rapp R A. J Electrochem Soc, 1988; 135: 731
[8] Richrds R W, Jones R D, Clements P H, Clark H. Int Mater Rev, 1994; 39: 191
[9] Murakami K, Nishida N, Osamura K, Tomota Y, Suzuki T. Acta Mater, 2004; 52: 1271
[10] Ennis P J, Zielinska–Lipiec A, Wachter O. Acta Mater, 1997; 45: 4901
[11] ASM, translated by Chinese Mechanical Engineering Society. Metals Handbook, 9th ed. Vol 4, Heat Treatment. Beijing: China Machine Press, 1988: 592
(美国金属学会主编,中国机械工程学会热处理专业学会主译. 金属手册(第九版)第四卷: 热处理.  北京: 机械工业出版社. 1988: 592)
[12] Jackson E. Trans Inst Met Finish, 1963; 40: 1
[13] Xiang Z D, Datta P K. Surf Coat Technol, 2004; 184: 108
[14] Sun X T, Fu J SXu Y, Zhang G S, Sun Y. Heat Treat Met, 2000; 7: 21
(孙希泰, 付建设, 徐英, 庄光山, 孙 毅. 金属热处理, 2000; 7: 21)
[15] Zhan L Z, HeY D, Wang D R. Intermetallics, 006; 14: 75
[16] Zhang G K, Li J, Chang C A. Rare Mater Eng(in press)
(张桂凯, 李炬, 陈长安. 稀有金属材料与工程, 待发表)
[17] Zhang W, Fang Z K, Gou X J. Mater Mech Eng, 2006;30(1): 9
(张伟, 范志康, 郭献军. 机械工程材料, 2006; 30(1): 9)
[18] Wang D Q. Appl Surf Sci, 2008; 54: 3026
[19] Gu G C, Liu B J. Hot Dip. Beijing: Chemical Industry Press, 1988: 77
(顾国成, 刘邦津. 热浸镀. 北京: 化学工业出版社, 1988: 77)
[20] Barbier F, Manuelli D, Bouchk K. Scr Mater, 1997; 36:425

[1] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[2] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[3] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[4] SUN Tengteng, WANG Hongze, WU Yi, WANG Mingliang, WANG Haowei. Effect ofIn Situ 2%TiB2 Particles on Microstructure and Mechanical Properties of 2024Al Additive Manufacturing Alloy[J]. 金属学报, 2023, 59(1): 169-179.
[5] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[6] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[7] ZHANG Jiarong, LI Yanfen, WANG Guangquan, BAO Feiyang, RUI Xiang, SHI Quanqiang, YAN Wei, SHAN Yiyin, YANG Ke. Effects of Heat Treatment on Microstructure and Mechanical Properties of a Bimodal Grain Ultra-Low Carbon 9Cr-ODS Steel[J]. 金属学报, 2022, 58(5): 623-636.
[8] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[9] YUAN Bo, GUO Mingxing, HAN Shaojie, ZHANG Jishan, ZHUANG Linzhong. Effect of 3%Zn Addition on the Non-Isothermal Precipitation Behaviors of Al-Mg-Si-Cu Alloys[J]. 金属学报, 2022, 58(3): 345-354.
[10] CHEN Run, WANG Shuai, AN Qi, ZHANG Rui, LIU Wenqi, HUANG Lujun, GENG Lin. Effect of Hot Extrusion and Heat Treatment on the Microstructure and Tensile Properties of Network Structured TiBw/TC18 Composites[J]. 金属学报, 2022, 58(11): 1478-1488.
[11] WANG Di, HUANG Jinhui, TAN Chaolin, YANG Yongqiang. Review on Effects of Cyclic Thermal Input on Microstructure and Property of Materials in Laser Additive Manufacturing[J]. 金属学报, 2022, 58(10): 1221-1235.
[12] WANG Wenquan, WANG Suyu, CHEN Fei, ZHANG Xinge, XU Yuxin. Microstructure and Mechanical Properties of TiN/Inconel 718 Composites Fabricated by Selective Laser Melting[J]. 金属学报, 2021, 57(8): 1017-1026.
[13] WANG Yue, WANG Jijie, ZHANG Hao, ZHAO Hongbo, NI Dingrui, XIAO Bolv, MA Zongyi. Effects of Heat Treatments on Microstructure and Mechanical Properties of AlSi10Mg Alloy Produced by Selective Laser Melting[J]. 金属学报, 2021, 57(5): 613-622.
[14] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[15] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
No Suggested Reading articles found!