Please wait a minute...
Acta Metall Sin  2009, Vol. 45 Issue (6): 764-768    DOI:
论文 Current Issue | Archive | Adv Search |
WEAR PERFORMANCE OF Ti6Al4V ALLOY MODIFIED BY Ag+Ta DUAL--ION IMPLANTATION
LENG Chongyan 1; ZHOU Rong 2; ZHANG Xu 3; LU Dehong 2; LIU Hongxi 2
1. School of Materials and Metallurgical Engineering; Kunming University of Science and Technology; Kunming 650093
2. School of Mechanical and Electrical Engineering; Kunming University of Science and Technology; Kunming 650093
3. Institute of Low Energy Nuclear Physics; Beijing Normal University; Beijing 100875
Cite this article: 

LENG Chongyan ZHOU Rong ZHANG Xu LU Dehong LIU Hongxi . WEAR PERFORMANCE OF Ti6Al4V ALLOY MODIFIED BY Ag+Ta DUAL--ION IMPLANTATION. Acta Metall Sin, 2009, 45(6): 764-768.

Download:  PDF(669KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The wear performance of Ti6Al4V alloy for clinical usage was modified by dual--ion implantation technique. The samples were implanted firstly with silver ions at a dose of 1.0×1017 cm-2, then with tantalum ions at a dose of 1.5×1017 cm-2. Nanoindenter instrument was used to measure the variation of hardness with displacement into surface of sample, and multi--functional tribological tester was used to investigate the wear and tribological property. Phase constitution in the surface layer of Ti6Al4V alloy was characterized by glancing angle X--ray diffraction (GAXRD), the X--ray photoelectron spectroscopy was used to analyze the chemical states of elements in the surface layer of sample. The results show that the worn area of Ag+Ta dual--ion--implanted Ti6Al4V alloy is decreased by 77\% compared with untreated alloy. The improvement of the wear property is related to the increase of hardness, long holding time of low friction coefficient and solid solution strengthening induced by Ag and Ta.

Key words:  Ti6Al4V      dual--ion implantation      solid solution strengthening      surface modification      wear performance     
Received:  07 November 2008     
ZTFLH: 

TG146.2

 

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2009/V45/I6/764

[1] Gurappa I. Mater Charact, 2003; 51: 131
[2] Rack H J, Qazi J I. Mater Sci Eng, 2006; C26: 1269
[3] Jia Q W, Sun J Y. Jiangsu Med J, 2002; 28: 619
(贾庆卫, 孙俊英. 江苏医药杂志, 2002; 28: 619)
[4] Wang H Z, Xu W, Dong Q R. Suzhou Univ J Med Sci, 2005; 25: 519
(王洪震, 徐炜, 董启榕. 苏州大学学报 (医学版), 2005; 25: 519)
[5] Shi W, Dong H, Bell T. Mater Sci Eng, 2000; A291: 27
[6] Dong H, Bell T. Wear, 2000; 238: 131
[7] Fu Y Q, Loh N L, Batchelor A W, Liu D X, Zhu X D, He J W, Xu K W. Surf Coat Technol, 1998; 1061: 193
[8] Liu X Y, Chu P K, Ding C X. Mater Sci Eng, 2004; R47–49: 121
[9] Goldberg J R, Gilbert J L. Biomaterials, 2004; 25: 851
[10] Huang P, Han Y, Xu K. Rare Met Mater Eng, 2002; 31: 308
(黄平, 憨勇, 徐可为. 稀有金属材料与工程, 2002; 31: 308)
[11] Li X Y, Fan A L, Tang B, Pan J D, Liu D X, Huang H, Xu Z. Tribology, 2003; 23: 108
(李秀燕, 范爱兰, 唐宾, 潘俊德, 刘道新, 黄 鹤, 徐重. 摩擦学学报, 2003; 23: 108)
[12] Ueda M, Silva M M, Otani C, Reuther H, Yatsuzuka M, Lepienski C M, Berni L A. Surf Coat Technol, 2003; 169–170: 408
[13] Itoh Y, Itoh A, Azuma H, Hioki T. Surf Coat Technol, 1999; 111: 172
[14] Han S, Kim H, Lee Y, Lee J, Kim S G. Surf Coat Technol, 1996; 82: 270
[15] Liu Y Z, Zu X T, Wang L, Qiu S Y. Vacuum, 2008; 83: 444
[16] Cai Y R. Rare Met Lett, 2005; 24(9): 40
(蔡玉荣. 稀有金属快报, 2005; 24(9): 40)
[17] Montali A. Injury, 2006; 37: S81
[18] Ning Y T, Zhao H Z. Silver. Changsha: Zhongnan University Press, 2005: 180
(宁远涛, 赵怀志. 银. 长沙: 中南大学出版社, 2005: 180)
[19] Tang H Q, Liu T, Liu X, Gu H Q, Zhao J. Nucl Instrum Methods, 2007; 255B: 304
[20] Sharkeev Y P, Perry A J, Fortuna S V. Surf Coat Technol, 1998; 108–109: 419

[1] GAO Han, LIU Li, ZHOU Xiaoyu, ZHOU Xinyi, CAI Wenjun, ZHOU Hongling. Preparation and Bioactivity of Micro-Nano Structure on Ti6Al4V Surface[J]. 金属学报, 2023, 59(11): 1466-1474.
[2] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[3] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[4] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[5] Yinhui ZHANG, Qiang FENG. Effects of W on Creep Behaviors of Novel Nb-Bearing Austenitic Heat-Resistant Cast Steels at 1000 ℃[J]. 金属学报, 2017, 53(9): 1025-1037.
[6] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
[7] Zhentao YU, Sen YU, Jun CHENG, Xiqun MA. Development and Application of Novel Biomedical Titanium Alloy Materials[J]. 金属学报, 2017, 53(10): 1238-1264.
[8] Xiao LIN, Jun GE, Shuilin WU, Baohua LIU, Huilin YANG, Lei YANG. Advances in Metallic Biomaterials with both Osteogenic and Anti-Infection Properties[J]. 金属学报, 2017, 53(10): 1284-1302.
[9] LI Weijuan, ZHANG Hengyi, FU Hao, ZHANG Jianping, QI Xiangyu. INTERNAL FRICTION STUDY OF MECHANISM OF BAKE-HARDENING ON LOW CARBON STEEL[J]. 金属学报, 2015, 51(4): 385-392.
[10] LUO Xinmin, WANG Xiang, CHEN Kangmin, LU Jinzhong, WANG Lan, ZHANG Yongkang. SURFACE LAYER HIGH-ENTROPY STRUCTURE AND ANTI-CORROSION PERFORMANCE OF AERO-ALUMINUM ALLOY INDUCED BY LASER SHOCK PROCESSING[J]. 金属学报, 2015, 51(1): 57-66.
[11] WANG Xiaona, HAN Lizhan, GU Jianfeng. PRECIPITATION KINETICS AND YIELD STRENGTH MODEL FOR NZ30K-Mg ALLOY[J]. 金属学报, 2014, 50(3): 355-360.
[12] LUO Xinmin, CHEN Kangmin, ZHANG Jingwen, LU Jinzhong,REN Xudong,LUO Kaiyu, ZHANG Yongkang. DISLOCATION MECHANISM OF SURFACE MODIFICATION FOR COMMERCIAL PURITY ALUMINUM  AND ALUMINUM ALLOY BY LASER SHOCK PROCESSING[J]. 金属学报, 2013, 49(6): 667-674.
[13] ZHANG Fenggang ZHU Xiaopeng WANG Mingyang LEI Mingkai. SURFACE MODIFICATION OF WC-Ni CEMENTED CARBIDE FOR SEALS BY HIGH-INTENSITY PULSED ION BEAM IRRADIATION[J]. 金属学报, 2011, 47(7): 958-964.
[14] DONG Deming GUAN Jianguo WANG Wei LI Wei ZHOU Jing. PREPARATION AND ELECTROMAGNETIC PROPERTIES OF MICROMETER Fe FLAKES MODIFIED WITH EPOXY RESIN[J]. 金属学报, 2009, 45(9): 1141-1145.
[15] Xu Wang. EXPERIMENTAL RESEARCH ON THE SURFACE MODIFICATION OF 316L STAINLESS STEEL BY HIGH-INTENSITY PULSED ION BEAMS[J]. 金属学报, 2007, 43(4): 393-398 .
No Suggested Reading articles found!