Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (10): 1253-1259     DOI:
Research Articles Current Issue | Archive | Adv Search |
FINITE ELEMENT MODELING OF TEMPERATURE DISTRIBUTION IN FIELD ACTIVATED SINTERING OF MoSi2-SiC COMPOSITE
Qiaodan Hu;Peng Luo;;Jianguo Li
上海交通大学 材料科学与工程学院
Cite this article: 

Qiaodan Hu; Peng Luo; Jianguo Li. FINITE ELEMENT MODELING OF TEMPERATURE DISTRIBUTION IN FIELD ACTIVATED SINTERING OF MoSi2-SiC COMPOSITE. Acta Metall Sin, 2008, 44(10): 1253-1259 .

Download:  PDF(2185KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Field Activated Sintering (FAS) modeling was made and finite element simulation was done by means of computer aided finite element method. The results show that FAS temperature field was determined by an interaction among Joule heating of electric field, heat released by chemical reaction, and heat transferring characteristics of die-specimen system. Due to overlap of heats by Joule effect and chemical reactions, the highest temperature was in the center of the sample and a radius temperature gradient was established. That significantly took effects to uniformity of microstructure and densification degree. Therefore, it is important to control temperature gradient within the sample of FAS to prepare dense and fine grained bulk materials.
Key words:  Field Activated Sintering (FAS)      MoSi2-SiC composite      Temperature field      Finite element modeling      
Received:  24 November 2007     
ZTFLH:  TB383  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I10/1253

[1]Jin X H,Gao L,Gui L H,Guo J K.J Mater Res,2002; 17:1024
[2]Gao Y P.Novel Technology of Powder Metallurgy-Spark Sintering.Beijing:Metallurgical Industry Press,1992:1 (高一平.粉末冶金新技术——电火花烧结.北京:冶金工业出版社,1992:1)
[3]Xue H,Munir Z A.J Eur Ceram Soc,1997;17:1787
[4]Gedevanishvili S,Munir Z A.Mater Sci Eng,1998;A242: 1
[5]Orru R,Cao G,Munir Z A.Chem Eng Sci,1999;54:3349
[6]Heian E M,Feng A,Munir Z A.Acta Mater,2002;50: 3331
[7]Orru R,Cincotti A,Cao G,Munir Z A.Chem Eng Sci, 2001;56:683
[8]Feng A,Graeve O A,Munir Z A.Comput Mater Sci,1998; 12:137
[9]Wang Y C,Fu Z Y.Mater Sci Eng,2002;B90:34
[10]Zou Z G,Fu Z Y,Yuan R Z,Mai L Q.J Wuhan Univ Technol-Mater Sci Ed,2002;17(1):23
[11]Zou Z G.Self-Propagation High Temperature Synthesis of TiC/Fe Composite.Beijing:Metallurgical Industry Press, 2002:27 (邹正光.TiC/Fe复合材料的自蔓延高温合成工艺与应用.北京:冶金工业出版社,2002:27)
[12]Yang S M.Theory of Heat Transfer.Beijing:Higher Ed- ucation Press,1982:5 (杨世铭.传热学.北京:高等教育出版社,1982:5)
[13]Wang B X.Engineering Theory of Heat and Mass Trans- fer.Beijing:Science Press,1982:5 (王补宣.工程传热传质学.北京:科学出版社,1982:5)
[14]Huebner K H,Thornton E A(eds.),Wang Z Q(trans.). Finite Element Method.Beijing:World Publishing Com- pany,1993:80 (Huebner K H,Thornton E A著.王至勤译.有限元素法.北京:世界图书出版公司,1993:80)
[15]Kong X Q.Application of Finite Element Method in Heat Transfer.Beijing:Science Press,1998:1 (孔祥谦.有限单元法在传热学中的应用.北京:科学出版社,1998:1)
[1] TANG Haiyan, LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. 金属学报, 2020, 56(12): 1629-1642.
[2] Xinhua LIU, Huadong FU, Xingqun HE, Xintong FU, Yanqing JIANG, Jianxin XIE. Numerical Simulation Analysis of Continuous Casting Cladding Forming for Cu-Al Composites[J]. 金属学报, 2018, 54(3): 470-484.
[3] Xiaoyu CHONG, Guangchi WANG, Jun DU, Yehua JIANG, Jing FENG. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process[J]. 金属学报, 2018, 54(2): 314-324.
[4] Yadong CHEN, Yunrong ZHENG, Qiang FENG. EVALUATING SERVICE TEMPERATURE FIELD OF HIGH PRESSURE TURBINE BLADES MADE OF DIRECTIONALLY SOLIDIFIED DZ125 SUPERALLOY BASED ON MICRO-STRUCTURAL EVOLUTION[J]. 金属学报, 2016, 52(12): 1545-1556.
[5] ZHAO Bo, WU Chuansong,JIA Chuanbao, YUAN Xin. NUMERICAL ANALYSIS OF THE WELD BEAD PROFILES IN UNDERWATER WET FLUX-CORED ARC WELDING[J]. 金属学报, 2013, 49(7): 797-803.
[6] XU Qingdong, LIN Xin, SONG Menghua, YANG Haiou, HUANG Weidong. MICROSTRUCTURE OF HEAT-AFFECTED ZONE OF LASER FORMING REPAIRED 2Cr13 STAINLESS STEEL[J]. 金属学报, 2013, 49(5): 605-613.
[7] PANG Ruipeng, WANG Fuming, ZHANG Guoqing, LI Changrong. STUDY OF SOLIDIFICATION THERMAL PARAMETERS OF 430 FERRITE STAINLESS STEEL BASED ON 3D-CAFE METHOD[J]. 金属学报, 2013, 49(10): 1234-1242.
[8] WEI Jie DONG Junhua KE Wei. NUMERICAL SIMULATION AND EXPERIMENTAL STUDY ON TEMPERATURE FIELD DURING CHEMICAL REAGENT COOLING PROCESS OF HOT ROLLED REBAR[J]. 金属学报, 2012, 48(1): 115-121.
[9] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADING I. Graphite Mould Method[J]. 金属学报, 2011, 47(12): 1495-1502.
[10] FENG Mingjie WANG Engang HE Jicheng. NUMERICAL SIMULATION ON TEMPERATURE FIELD IN HIGH SPEED STEEL COMPOSITE ROLL DURING CONTINUOUS POURING PROCESS FOR CLADDING
II. Copper Mould Method
[J]. 金属学报, 2011, 47(12): 1503-1512.
[11] YU Haiqi ZHU Miaoyong. 3-D NUMERICAL SIMULATION OF FLOW FIELD AND TEMPERATURE FIELD IN A ROUND BILLET CONTINUOUS CASTING MOLD WITH ELECTROMAGNETIC STIRRING[J]. 金属学报, 2008, 44(12): 1465-1473.
[12] . Numerical Simulation of two-phase Solidification Process of[J]. 金属学报, 2007, 43(6): 668-672 .
[13] XiaoSong Feng. TEMPERATURE FILED SIMULATION OF LASER BRAZING FOR GALVANIZED STEEL SHEETS[J]. 金属学报, 2006, 42(8): 882-886 .
[14] . Finite Element Simulation for Laser Direct Depositing Processes of Metallic Vertical Thin Parts(1)[J]. 金属学报, 2006, 42(5): 449-453 .
[15] . NUMERICAL ANALYSIS OF TRANSIENT DEVELOPMENT OF TEMPERATURE FIELD IN KEYHOLE PLASMA ARC WELDING[J]. 金属学报, 2006, 42(3): 311-316 .
No Suggested Reading articles found!