Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (1): 115-121    DOI: 10.3724/SP.J.1037.2011.00474
论文 Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION AND EXPERIMENTAL STUDY ON TEMPERATURE FIELD DURING CHEMICAL REAGENT COOLING PROCESS OF HOT ROLLED REBAR
WEI Jie, DONG Junhua, KE Wei
State Key Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

WEI Jie DONG Junhua KE Wei. NUMERICAL SIMULATION AND EXPERIMENTAL STUDY ON TEMPERATURE FIELD DURING CHEMICAL REAGENT COOLING PROCESS OF HOT ROLLED REBAR. Acta Metall Sin, 2012, 48(1): 115-121.

Download:  PDF(3545KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The corrosion resistance of water cooled rebar is improved by applying a chemical reagent cooling process on the basis of maintaining the high mechanical property. To provide the reference basis for the on-site application of chemical reagent cooling process, the temperature field of the two-stage cooling process (first stage of chemical reagent of FM cooling and second stage of water cooling) of rebar produced by chemical cooling is simulated using the finite element method. Furthermore, the corrosion resistance of scale formed during the first stage of chemical reagent cooling was evaluated in laboratory. Applying the processing parameters of water cooling in steel mill, the temperature field of one-stage cooling was simulated. Compared with the temperature field of the one-stage cooling, the influence of processing parameters on the temperature field during two-stage cooling is analyzed. The results showed that the smaller heat transfer coefficient is applied to increase the oxidation temperature and improve the quality of the oxide scale in the first stage of FM cooling. In the second stage of water cooling, the cooling curve is very approximate to that of one-stage cooling when the heat transfer coefficient of one-stage cooling is remained. Therefore, the mechanical property of hot-rolled rebar of grade III can be ensured. Furthermore, the first stage of FM cooling process was implemented in lab using the optimizing parameters obtained from finite element analysis. The oxide scale forming using FM cooling is compact. And its corrosion resistance is much better than water-cooled rebar, which proves that it is feasible to improve the corrosion resistance of water-cooled rebar using FM cooling before water cooling.
Key words:  rebar      chemical reagent cooling      temperature field      finite element      corrosion resistance      high strength     
Received:  22 July 2011     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00474     OR     https://www.ams.org.cn/EN/Y2012/V48/I1/115

[1] Pradhan B, Bhattacharjee B. Constr Build Mater, 2011; 25: 2565

[2] Shi X M, Ning X, Keith F, Jing G. Constr Build Mater, 2012; 30: 125

[3] Zhao M Q, Zhang R Q, Yang Z, Li G J. Anhui Metall, 2003; 4: 23

(赵明琦, 张若蔷, 杨峥, 李光俊. 安徽冶金, 2003; 4: 23)

[4] Huang W, Zhang L,Wang P, Shu W. Archit Technol, 2010; 41: 242

(黄伟, 张丽, 王平, 疏伟. 建筑技术, 2010; 41: 242)

[5] Nikolaou J, George D P. Int J Impact Eng, 2005; 31: 1065

[6] Li G F, Dong H, Gao W, Zhao Y J. J Iron Steel Res, 1996; 8: 42

(李桂芬, 董瀚, 高伟, 赵玉君. 钢铁研究学报, 1996; 8: 42)

[7] Sun X W, Huo X D, Liu D L, Kang Y L, Mao X P, Chen G J, Li L Y. J Univ Sci Technol Beijing, 2004; 26: 268

(孙贤文, 霍向东, 柳得橹, 康永林, 毛新平, 陈贵江, 李烈军. 北京科技大学学报, 2004; 26: 268)

[8] Zakya A I, El–Morsyb A, El–Bitar T. J Mater Process Technol, 2009; 209: 1565

[9] Wei J, Dong J H, Han E H, Ke W. Corros Sci Prot Technol, 2009; 21: 468

(魏洁, 董俊华, 韩恩厚, 柯伟. 腐蚀科学与防护技术, 2009; 21: 468)

[10] Zitrou E, Nikolaou J, Tsakiridis P E, Papadimitriou G D. Constr Build Mater, 2007; 21: 1161

[11] Castro P, W´eleva L, Balanc´an M. Constr Build Mater, 1997; 11: 75

[12] Novak P, Mala R, Joska L. Cem Concr Res, 2001; 31: 589

[13] Zou Y, Wang J, Zheng Y Y. Corros Sci, 2011; 53: 208

[14] Wei J, Dong J H, Ke W. Constr Build Mater, 2010; 24: 275

[15] Wei J, Dong J H, Ke W. Constr Build Mater, 2011; 25: 1243

[16] Chen R Y, Yuen W Y D. Oxid Met, 2001; 56: 89

[17] Almusallam A A. Constr Build Mater, 2001; 15: 361

[18] P´erez F J, Mart´?nez L, Hierro M P, G´omez C, Portela A L, Pucci G N, Duday D, Lecomte–Beckers J, Greday Y. Corro Sci, 2006; 48: 472

[19] Saurabh K, Ananya M, Sudin C, Sanjay C. ISIJ Int, 2004; 44: 1217

[20] Cheng M, Hong H P, Peng D, Kang Y L, Jin Y C. J Iron Steel Res, 2008; 20: 18

(程满, 洪慧平, 彭聃, 康永林, 金永春. 钢铁研究学报, 2008; 20: 18)

[21] Lee Y Y, Choi S, Hodgson P D. Mater Process Technol, 2002; 125: 678

[22] Morales R D, Lopez A G, Olivare M. ISIJ Int, 1990; 30: 48

[23] Yao S C, Cox T L. Exp Heat Transfer, 2002; 15: 207

[24] Zhang G B, Sheng Y, Wei M J, Wu X Z, Wang Y S, Liu Q L. J Heibei Inst Technol, 2002; 24: 32

(张国滨, 盛艳, 魏明军, 武学泽, 王彦生, 刘庆禄. 河北理工学院学报, 2002; 24: 32)

[25] Freund S, Pautsch A G, Shedd T A, Kabelac S. Int J Heat Mass Transfer, 2007; 50: 1953
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[3] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[4] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[5] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[6] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[7] YANG Lei, ZHAO Fan, JIANG Lei, XIE Jianxin. Development of Composition and Heat Treatment Process of 2000 MPa Grade Spring Steels Assisted by Machine Learning[J]. 金属学报, 2023, 59(11): 1499-1512.
[8] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[9] JIN Xinyan, CHU Shuangjie, PENG Jun, HU Guangkui. Effect of Dew Point on Selective Oxidation and Decarburization of 0.2%C-1.5%Si-2.5%Mn High Strength Steel Sheet During Continuous Annealing[J]. 金属学报, 2023, 59(10): 1324-1334.
[10] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[11] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[12] WANG Tao, LONG Dijun, YU Liming, LIU Yongchang, LI Huijun, WANG Zumin. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. 金属学报, 2022, 58(2): 184-192.
[13] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[14] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[15] LI Xueda, LI Chunyu, CAO Ning, LIN Xueqiang, SUN Jianbo. Crystallography of Reverted Austenite in the Intercritically Reheated Coarse-Grained Heat-Affected Zone of High Strength Pipeline Steel[J]. 金属学报, 2021, 57(8): 967-976.
No Suggested Reading articles found!