Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (10): 1203-1208     DOI:
Research Articles Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF MOLTEN STEEL FLOW IN CENTRIFUGAL FLOW TUNDISH
;;;;;
上海大学
Cite this article: 

;. NUMERICAL SIMULATION OF MOLTEN STEEL FLOW IN CENTRIFUGAL FLOW TUNDISH. Acta Metall Sin, 2008, 44(10): 1203-1208 .

Download:  PDF(2707KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  ABSTRACT Flow structure and RTD curve in Centrifugal Flow Tundish was predicted by mathematical simulation method, and the results were verified with the measurement data obtained from water model. Simulation results showed that, the molten steel in the rotation chamber rotated in a horizontal pattern due to the effect of electromagnetic force, and the swirling flow will promote the inclusion collision and coalescence. Deflection characteristic of the outflow from the rotation chamber leads to the asymmetrical distribution in the flow structure of distribution chamber, thus a horizontal circumfluence was formed and it will promote the mixture of molten steel and extend the residence time. Compared with the traditional tundish, the fraction of dead volume in the Centrifugal Flow Tundish was reduced, meanwhile the fraction of plug volume and mix volume were increased, and the study on the inclusion behavior also showed that the growth rate due to the collision and floatation rate of inclusions in the Centrifugal Flow Tundish was superior to traditional tundish.
Key words:  Centrifugal Flow Tundish      molten steel flow      RTD curve      inclusion-removal efficiency      numerical simulati     
Received:  22 January 2008     
ZTFLH:  TG249.7  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I10/1203

[1]Miki Y,Kitaoka H,Sakuraya T,Fujii T.ISIJ Int,1992; 32:142
[2]Miki Y,Kitaoka H,Bessho N,Sakuraya T,Ogura S,Kuga M.Tetsu Hagané,1996;82:40 (三木祐司,北冈英就,别所永康,樱谷敏和,小仓滋,久我正昭.铁と钢,1996;82:40)
[3]Miki Y,Shibata H,Fujii T,Bessho N,Kishimoto Y,Sori- machi K.Tetsu Hagané2000;86:239 (三木祐司,柴田浩光,别所永康,岸本康夫,反町健一,广田哲仁.铁と钢,2000;86:239)
[4]Li B K,Qi F S,Wang F,Liu J.Acta Metall Sin,2007;43: 303 (李宝宽,齐凤升,王芳,刘杰.金属学报,2007;43:303)
[5]Wang F,Li B K,Tsukihashi F.ISIJ Int,2007;47:568
[6]Launder B E,Spalding D B.Comp Meth Appl Mech Eng, 1974;3:269
[7]Tripathi A,Ajmani S K.ISIJ Int,2005;45:1616
[8]Damle C,Sahai Y.ISIJ Int,1995;35:163
[9]Yeh J L,Hwang W S,Chou C L.ISLJ Int,1993;33:588
[10]Spitzer K H,Duke M,Schwerdtfeger K.Metall Trans, 1986;17B:119
[11]Debroy T,Sychterz J A.Metall Trans,1985;16B:497
[12]He Y,Sahai Y.Metall Trans,1987;18B:81
[13]Sahai Y,Emi T.ISIJ Int,1996;36:667
[14]Zhang B W,Deng K,Lei Z S,Ren Z M.Acta Metall Sin, 2004;40:623 (张邦文,邓康,雷作胜,任忠鸣.金属学报,2004;40:623)
[15]Zhang B W.PhD Thesis,Shanghai University,Shanghai, 2003 (张邦文.上海大学博士学位论文,上海,2003)
[16]Madias J,Martin D,Ferreyra M,Villoria R,Garamendy A.ISIJ Int,1999;39:787
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[8] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[9] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[10] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[11] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[12] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[13] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[14] Jun LI, Mingxu XIA, Qiaodan HU, Jianguo LI. Solutions in Improving Homogeneities of Heavy Ingots[J]. 金属学报, 2018, 54(5): 773-788.
[15] Zheng LIU, Zhiping CHEN, Tao CHEN. Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry[J]. 金属学报, 2018, 54(3): 435-442.
No Suggested Reading articles found!