Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (6): 641-646     DOI:
Research Articles Current Issue | Archive | Adv Search |
NUMERICAL SIMULATION OF WELD FORMATION IN LASER+GMAW HYBRID WELDING,II. Combined Volumetric Distribution Mode of Hybrid Welding Heat Source
山东大学南校区材料学院连接技术研究所
Cite this article: 

. NUMERICAL SIMULATION OF WELD FORMATION IN LASER+GMAW HYBRID WELDING,II. Combined Volumetric Distribution Mode of Hybrid Welding Heat Source. Acta Metall Sin, 2008, 44(6): 641-646 .

Download:  PDF(1207KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Based on the geometry characteristics of laser+GMAW-P hybrid welds and the macroscopic mechanism of heat transfer, four new kinds of adaptive combined volumetric heat source modes are developed The arc heat flux, thermal content of overheated droplets, and laser power are described as double-elliptic plane distribution, double-ellipsoid body distribution, and peak value increasing-rotary curve body distribution, respectively. To apply the developed adaptive combined volumetric heat source modes into numerical analysis of temperature profiles in hybrid welding, the geometry and dimension of hybrid welds are predicted under different conditions. Through comparing the calculated results to the experimental measurements, it is found that both match well. The four kinds of adaptive combined volumetric heat source modes fully consider the process features of hybrid welding, can numerically simulate the weld geometry and dimension accurately, and reflect quantitatively the varying regularity of temperature profiles in hybrid welding.
Key words:  Hybrid welding      laser welding      GMAW      combined volumetric heat source mode      weld formation      numerical simu     
Received:  25 October 2007     
ZTFLH:  TG407  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I6/641

[1]Kinney P,Farson D.In:Haferkamp H,Von Busse A,Bar- cikowski S,Bunte J eds.,Proc 22nd lnt Conf on Applica- tions of Lasers & Electro-Optics ICALEO 2003,Section A,Orland,FL:Publication of Laser Institute of America, 2003:21
[2]Petring D,Fuhmann C,Wolf N,Poprawe R.In:Hafer- kamp H,Von Busse A,Barcikowski S,Bunte J eds.,Proc 22nd lnt Conf on Applications of Lasers & Electro Optics ICALEO 2003,Section A,Orland,FL:Publication of Laser Institute of America,2003:1
[3]Graf T,Staufer H.Weld J,2003;82:42
[4]Bagger C,Olsen F O.J Laser Appl,2005;17:2
[5]Mahrle A,Beyer E.J Laser Appl,2006;18:169
[6]Wu C S,Dorn L.Acta Metall Sin,1997;33:774 (武传松,Dorn L.金属学报,1997;33:774)
[7]Xu G X,Wu C S.Front Mater Sci China,2007;1:24
[8]Xu G X,Wu C S,Qin G L,Wang X Y,Lin S Y.Acta Metall Sin,2008;44:163 (胥国祥,武传松,秦国梁,王旭友,林尚扬.金属学报,2008;44:163)U
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[8] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[9] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[10] LIU Yang,WANG Lei,SONG Xiu,LIANG Taosha. Microstructure and High-Temperature Deformation Behavior of Dissimilar Superalloy Welded Joint of DD407/IN718[J]. 金属学报, 2019, 55(9): 1221-1230.
[11] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[12] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[13] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[14] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[15] Zhe SONG, Shengchuan WU, Yanan HU, Guozheng KANG, Yanan FU, Tiqiao XIAO. The Influence of Metallurgical Pores on Fatigue Behaviors of Fusion Welded AA7020 Joints[J]. 金属学报, 2018, 54(8): 1131-1140.
No Suggested Reading articles found!