Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (3): 336-340     DOI:
Research Articles Current Issue | Archive | Adv Search |
EFFECTS OF GRAIN SIZE AND THICKNESS ON CREEP DEFORMATION OF ALUMINIUM THIN FOILS WITH MESO--SCALE
Zhou Qing
Cite this article: 

Zhou Qing. EFFECTS OF GRAIN SIZE AND THICKNESS ON CREEP DEFORMATION OF ALUMINIUM THIN FOILS WITH MESO--SCALE. Acta Metall Sin, 2008, 44(3): 336-340 .

Download:  PDF(783KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  It is found that the plastic deformation behavior of the materials in meso-scale is different from that in macro scale, also that in micro scale. The importance of studying the high temperature deformation behavior of those materials is in that it paves the ways for basic forming discipline of microforming and developing microforming technology. Constant applied stress creep experiments at 200C of aluminum alloy thin foils with the thickness of 10~350m are carried out. The effect of the thickness and the grain size to the strain rate is studied. Subgrains are found near the grain boundary under the observation by Transaction Electronic Microscopy. The results show that using the parameter of t/d, the size effect of deforming can be better summarized. The strain rate is fast when t/d is reduced. It is found that the parameter of t/d has affected to the stress exponent. An equation is obtained to correlate the strain rate with t/d. The relationship between the stress exponent and t/d simulated by the equation is perfectly correspondent to the experimental data.
Key words:  creep      aluminium alloy      thin foil      microforming      thickness      grain size      
Received:  13 August 2007     
ZTFLH:  TG111.8  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I3/336

[1]Engel U,Eckstein R.J Mater Process Technol,2002;125- 126:35
[2]Brotzen F R.Int Mater Rev,1994;39:24
[3]Kals T A,Eckstein R.J Mater Process Technol,2000; 103:95
[4]Zhang K F,Lei K.Chin Mech Eng,2004;15:1121 (张凯锋,雷鹍.中国机械工程,2004;15:1121)
[5]GeiBd(?)rfer S,Engel U,Geiger M.Int J Mach Tools Man- ufacture,2006;46:1222
[6]Zhang K F,Wang C L.Chin J Mech Eng,2004;40(5):82 (张凯锋,王长丽.机械工程学报,2004;40(5):82)
[7]Yamashita T,Itoh G,Nitta T.In:Imam M A ed.,The 3rd Pacific Rim Int Conf on Advance Materials and Pro- cessing (PRICM3),Hawaii,USA:The Minerals,Metals & Materials Society,1998:2713
[8]Frost H J,Ashby M F.Deformation Mechanism Maps. Oxford:Pergamon Press,1982:58
[9]Sherby O D,Klundt R H,Miller A K.Metall Trans,1977; 8A:843
[1] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[2] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[3] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[7] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[8] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[9] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[10] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[11] CHEN Junzhou, LV Liangxing, ZHEN Liang, DAI Shenglong. Precipitation Strengthening Model of AA 7055 Aluminium Alloy[J]. 金属学报, 2021, 57(3): 353-362.
[12] YANG Lipo, ZHANG Hailong, ZHANG Yongshun. Present Analysis and Trend Prediction of Shape/ Performance Collaborative Control for High-End Cold Rolling Foils[J]. 金属学报, 2021, 57(3): 295-308.
[13] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[14] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[15] ZHANG Shouqing, HU Xiaofeng, DU Yubin, JIANG Haichang, PANG Huiyong, RONG Lijian. Cross-Section Effect of Ni-Cr-Mo-B Ultra-Heavy Steel Plate for Offshore Platform[J]. 金属学报, 2020, 56(9): 1227-1238.
No Suggested Reading articles found!