Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (4): 495-500     DOI:
Research Articles Current Issue | Archive | Adv Search |
CELLULAR AUTOMATON SIMULATION STUDY ON NANOGRAIN GROWTH BASED ON THERMODYNAMIC FUNCTIONS OF NANOCRYSTALLINE
;Xiaoyan SONG;;
北京工业大学
Cite this article: 

Xiaoyan SONG. CELLULAR AUTOMATON SIMULATION STUDY ON NANOGRAIN GROWTH BASED ON THERMODYNAMIC FUNCTIONS OF NANOCRYSTALLINE. Acta Metall Sin, 2008, 44(4): 495-500 .

Download:  PDF(743KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Materials modeling and simulation have been widely used in studies on microstructure evolutions of conventional polycrystalline materials, but very few reports for uses in nanocrystalline materials. Based on our previous analytical model that describes the thermodynamic functions of nanograin boundaries (X.Song, J.Zhang, L.Li, et al, Acta Mater. 2006, 54(20), 5541-5550), the thermodynamic features of nanograin boundaries were introduced into the Cellular Automaton algorithm. With the hybrid model, the quantitative and visual simulations of nanograin growth have been carried out in this article. The simulation results show that the nanograin growth kinetics is different from the normal grain growth behavior in conventional polycrystalline materials. The nanograin growth exponent, n, is not a constant as in the polycrystalline metals which equals 2, but changes with the growing process, which has a range of 1.706.59. The excess free energy of the nanograin boundaries is the driving force for nanograin growth, which is closely related with the grain size. The simulation studies prove that the thermodynamic features of nanograin boundaries strongly affect the energy state of the nanocrystalline materials hence the nanograin growth kinetics, as a result of the nanoscale effect. It is considered by the authors that the simulations of nanograin growth should take into account the thermodynamic features of nanocrystalline materials.
Key words:  nanocrystalline materials      nanograin growth      Cellular Automaton simulation      thermodynamics      
Received:  02 August 2007     
ZTFLH:  TG111  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I4/495

[1]Zhang L D,Mu J M.Nano Materials and Nano Structure. Beijing:Science Press,2001:5,61 (张立德,牟季美.纳米材料和纳米结构.北京:科学出版社,2001:5,61)
[2]Wen Y H,Zhou F X,Liu Y W.Adv Mech,2001;31:47 (文玉华,周富信,刘曰武.力学进展,2001;31:47)
[3]Raabe D,translated by Xiang J Z,Wu X H.Compu- tational Materials Science.Beijing:Chemical Industry Press,2002:8 (Raabe D著;项金钟,吴兴惠译.计算材料学.北京:化学工业出版社,2002:8)
[4]Srolovitz D J,Grest G S,Anderson M P.Acta Metall,1985; 33:2233
[5]Song X Y,Liu G Q.Scr Mater,1998;38:1691
[6]Raabe D.Acta Mater,2000;48:1617
[7]Yu Q,Esche S K.Mater Lett,2003;57:4622
[8]Liu Z J,Shen Y G.Acta Mater,2004;52:729
[9]Fan D,Chen L Q.Acta Mater,1997;45:611
[10]Yoshihiro S,Yoshiyuki S,Hidehiro O.Comput Mater Sci, 2007;40:40
[11]Raabe D.Annu Rev Mater Res,2002;32:53
[12]Li Q,Li D Z,Qian B N.Acta Phys Sin,2004;53:3477 (李强,李殿中,钱百年.物理学报,2004;53:3477)
[13]Raghavan S,Sahay S S.Mater Sci Eng,2007;A445-446: 203
[14]Song X Y,Gao J P,Zhang J X.Acta Phys Sin,2005;54: 1313 (宋晓艳,高金萍,张久兴.物理学报,2005;54,1313)
[15]Song X Y,Yang K Y,Zhang J X.J Nanosci Nanotechnol, 2005;5:2155
[16]Song X Y,Li L M,Zhang J X,Yang K Y.Acta Mater, 2006;54:5541
[17]Neumann J V.Theory of Self-reproducing Automata.Ur- bana,Champaign:University of Illinois Press,1966:1
[18]Hesselbarth H W,Gobel I R.Acta Metall Mater,1991; 39:2135
[19]Fecht J H.Phys Rev Lett,1990;65:610
[20]Wagner M.Phys Rev,1992;45B:635
[21]Meng Q P,Rong Y H,Xu Z Y.Sci Chin,2002;32E:457 (孟庆平,戎永华,徐祖耀.中国科学,2002;32E:457)
[22]Zhang Y J,Xie Y Q,Li W M.Chin J Nonferrous Met, 1996;6:114 (张迎九,谢佑卿,李为民.中国有色金属学报,1996;6:114)
[23]Xu Z Y,Li L.Material Thermodynamics.3rd Edition, Beijing:Science Press,2005:30 (徐祖耀,李麟.材料热力学.第3版,北京:科学出版社,2005:30)
[24]Ye D L,Hu J H.Applied Handbook of Thermodynamics Properties of Inorganic Substance.2nd Edition,Beijing: Metallurgical Industry Press,2002:278 (叶大伦,胡建华.实用无机物热力学数据手册.第2版,北京:冶金工业出版社,2002:278)
[1] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[2] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[3] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[4] WANG Zumin,ZHANG An,CHEN Yuanyuan,HUANG Yuan,WANG Jiangyong. Research Progress on Fundamentals and Applications of Metal-Induced Crystallization[J]. 金属学报, 2020, 56(1): 66-82.
[5] Chengming ZHENG, Qingchao TIAN. Effect of Alloy Elements on Oxidation Behavior of Piercing Plug Steel[J]. 金属学报, 2019, 55(4): 427-435.
[6] Liheng LIU,Chunshan CHE,Gang KONG,Jintang LU,Shuanghong ZHANG. DESTABILIZATION MECHANISM OF Fe-Al INHIBITION LAYER IN Zn-0.2%Al HOT-DIP GALVANIZING COATING AND RELATED THERMODYNAMIC EVALUATION[J]. 金属学报, 2016, 52(5): 614-624.
[7] Feng LIU, Kang WANG. DISCUSSIONS ON THE CORRELATION BETWEEN THERMODYNAMICS AND KINETICS DURING THE PHASE TRANSFORMATIONS IN THE TMCP OF LOW-ALLOY STEELS[J]. 金属学报, 2016, 52(10): 1326-1332.
[8] XIE Jun, YU Jinjiang, SUN Xiaofeng, JIN Tao, SUN Yuan. CARBIDE EVOLUTION BEHAVIOR OF K416B AS-CAST Ni-BASED SUPERALLOY WITH HIGH W CONTENT DURING HIGH TEMPERATURE CREEP[J]. 金属学报, 2015, 51(4): 458-464.
[9] WU Changjun, ZHU Chenlu, SU Xuping, LIU Ya, PENG Haoping, WANG Jianhua. THERMODYNAMICAL AND KINETIC INVESTIGA-TION OF FORMATION OF PERIODIC LAYERED STRUCTURE IN TiCu/Zn INTERFACE REACTION[J]. 金属学报, 2014, 50(8): 930-936.
[10] MA Ping, WU Erdong, LI Wuhui, SUN Kai, CHEN Dongfeng. MICROSTRUCTURES AND HYDROGEN STORAGE PROPERTIES OF Ti0.7Zr0.3(Cr1-xVx)2 ALLOYS[J]. 金属学报, 2014, 50(4): 454-462.
[11] WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong. CALCULATION OF TRANSFORMATION DRIVING FORCE FOR THE PRECIPITATION OF NANO-SCALED CEMENTITES IN THE HYPOEUTECTOID STEELS THROUGH ULTRA FAST COOLING[J]. 金属学报, 2013, 49(1): 26-34.
[12] LI Wuhui TIAN Baohong MA Ping WU Erdong. HYDROGEN STORAGE PROPERTIES OF ScMn2 ALLOY[J]. 金属学报, 2012, 48(7): 822-829.
[13] WU Chaofeng MA Mingxing WU Aiping LIU Wenjin ZHONG Minlin ZHANG Weiming ZHANG Hongjun. MORPHOLOGIC CHARACTERISTICS OF IN SITU SYNTHESIZED CARBIDE PARTICLES IN LASER CLADDED Fe-BASED COMPOSITE COATINGS[J]. 金属学报, 2009, 45(9): 1091-1098.
[14] PENG Ningqi TANG Guangbo LIU Zhengdong WU Xiuyue. MODIFICATION OF ZENER'S TWO--PARAMETER IN THE SUPERELEMENT MODEL FOR Fe--Σ Xi--C ALLOY SYSTEMS[J]. 金属学报, 2009, 45(3): 331-337.
[15] MA Yingche WANG Weidong CHEN Bo GAO Ming LIU Kui LI Yiyi. INTERFACE REACTION BETWEEN CERAMIC MOULDS AND Ti46Al1B AS--CAST VALVES[J]. 金属学报, 2009, 45(3): 369-373.
No Suggested Reading articles found!