Please wait a minute...
Acta Metall Sin  2006, Vol. 42 Issue (10): 1046-1050     DOI:
Research Articles Current Issue | Archive | Adv Search |
UNSTABLE TEMPERATURE FIELD FOR THERMAL-GRADIENT CVI DENSIFICATION PROCESS
Cite this article: 

. UNSTABLE TEMPERATURE FIELD FOR THERMAL-GRADIENT CVI DENSIFICATION PROCESS. Acta Metall Sin, 2006, 42(10): 1046-1050 .

Download:  PDF(215KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Thermal-gradient chemical vapor infiltration (TCVI) is a novel and effective process for fabricating C/C composites. However, the changing of the temperature field during infiltration is rather complex, which is difficult to obtain the results by the resolution method. In this paper, the finite element model concerning unstable temperature field for TCVI process was set up, and, temperature field and temperature distribution during the whole infiltration process were given out by numerical simulation. The relationship between deposition temperature and infiltration efficiency was also investigated. The experimental results of the temperature distribution were accordant to the simulation results.
Key words:  C/C composites      TCVI      numerical simulation      unstable temperature field      
Received:  15 February 2006     
ZTFLH:  TB332  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2006/V42/I10/1046

[1]Li H J,Li A J,Bai R C.Carbon,2005;43:2837
[2]Ramachandran P A,Doraiswamy L K.AIChE J,1982;28:881
[3]Jensen K F,Graves D B.J Electrochem Soc,1983;130:1950
[4]Teruoki T,Motoaki K,Yoshiaki I,Kenji H.Chem Eng Sci,2001;56:2161
[5]Jiang K Y,Li H J,Wang M J.Mater Lett,2002;56:419
[6]Li A J,Li H J,Bai R C.In:Korean Carbon Society ed.,Proceeding Carbon 2005,Gyeongju:Korean Carbon Society,2005:264
[7]Lin R T.Mass Transfer and Heat Transfer in Porous Media.Beijing:Science Press,1995:74(林瑞泰.多孔介质传热传质引论.北京:科学出版社,1995:74)
[8]Zhang W,Huttinger K J.Comps Sci Technol,2002;62:1947
[9]Guillaume V,Anthony W,Jean F A.J Non-Newtonian Fluid Mech,2005;128:144
[10]Ahmet B U,Tanll T,Nevin S.Int J Thermal Sci,2005;44:726
[11]Shi J.Chemical Engineering Manual.Beijing:Chemical Industry Press,1996:569(时钧.化学工程手册.北京:化学工业出版社,1996:569)
[12]Tu C J,Shen L C.Heat Exchange.Beijing:Higher Education Press,1992:183(屠传经,沈珞婵.热传导.北京:高等教育出版社,1992:183)
[13]Zhang S Y,Li H J,Sun J.Acta Mater Comps Sin,2002;19(5):43(张守阳,李贺军,孙军.复合材料学报,2002;19(5):43)o
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[8] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[9] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[10] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[11] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[12] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[13] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[14] Jun LI, Mingxu XIA, Qiaodan HU, Jianguo LI. Solutions in Improving Homogeneities of Heavy Ingots[J]. 金属学报, 2018, 54(5): 773-788.
[15] Zheng LIU, Zhiping CHEN, Tao CHEN. Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry[J]. 金属学报, 2018, 54(3): 435-442.
No Suggested Reading articles found!