Please wait a minute...
Acta Metall Sin  2005, Vol. 41 Issue (12): 1256-1260     DOI:
Research Articles Current Issue | Archive | Adv Search |
STUDY OF AGING BEHAVIOR OF Cu-Nb CONTAINING STEELS BY CREEP METHOD
WANG Xuemin; SHANG Chengjia; YANG Shanwu; LI Chuang; HE Xinlai; ZHOU Guifeng
Department of Materials Physics; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

WANG Xuemin; SHANG Chengjia; YANG Shanwu; LI Chuang; HE Xinlai; ZHOU Guifeng. STUDY OF AGING BEHAVIOR OF Cu-Nb CONTAINING STEELS BY CREEP METHOD. Acta Metall Sin, 2005, 41(12): 1256-1260 .

Download:  PDF(332KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  A creep test was conducted on a Gleeble-1500 thermal simulator for monitoring the aging procedure of Cu-Nb ultra-low carbon steels with different contents of copper. The result indicated that during creep testing the occurrence of precipitation could make a plateau on the creep curve. The left- and right-hand ending points of the plateau can be defined as the precipitation start (Ps) and finish (Pf) times, respectively. The Pf is in coincidence with the peak time (tp) from hardness curve. The precipitation-time-temperature (PTT) diagrams of two steels were obtained.
Key words:  Cu-Nb containing ultra low carbon steels      creep      aging hardening      
Received:  16 March 2005     
ZTFLH:  TG142.31  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2005/V41/I12/1256

[1] Krishnadev M R. In: Michael K ed., Proc Int Conf on Technology and Applications of HSLA Steels. Metals Park, Ohio: ASM, 1984: 129
[2] Mikalac S J, Vassilaros M G. In: Deardo A J ed., Proc Int Conf on Processing, Microstructure and Properties of Microalloyed and Other Modern High Strength Low Alloy Steels. Warrendale, PA: Iron and Steel Society, 1991: 331
[3] Hwang Q C, Lee S, Yoo J Y. Mater Sci Eng, 1998; A252: 256
[4] Wang X M, He X L, Shang C J, Yang S W, Wu H B. ISIJ Int, 2002; 42: 1553
[5] Shang C J, Wang X M, He X L., Yang S W, Yuan Y. J Univ Sci Technol Beijing, 2001; 8: 224
[6] Krishnadev M R, Galibois A. Metall Trans, 1975; 6: 222
[7] Sano N, Maehara Y. J Jpn Inst Met, 1996; 60: 261 (佐野 直幸,前原 泰裕.日本金属学会志, 1996;60:261)
[8] Morita M, Sato K, Hosoya Y. ISIJ Int, 1994; 34: 92
[9] Wang X M, Zhou G F, Yang S W, He X L. Acta Metall Sin, 2000; 36: 113 (王学敏,周挂峰,杨善武,贺信莱.金属学报,2000;36:113)
[10] Sun W P, Liu W J, Jonas J J. Metall Trans, 1989; 20A: 2707
[11] Kouichi M, Hideaki K, Takashi W. ISIJ Int, 1990; 30: 817
[12] Wada H, Houbaert Y, Penning J, Dilewijns J. ATB Metall, 1983; 23: 31;
[1] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[2] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[3] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[4] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[5] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[6] PENG Zichao, LIU Peiyuan, WANG Xuqing, LUO Xuejun, LIU Jian, ZOU Jinwen. Creep Behavior of FGH96 Superalloy at Different Service Conditions[J]. 金属学报, 2022, 58(5): 673-682.
[7] YANG Zhikun, WANG Hao, ZHANG Yiwen, HU Benfu. Effect of Ta Content on High Temperature Creep Deformation Behaviors and Properties of PM Nickel Base Superalloys[J]. 金属学报, 2021, 57(8): 1027-1038.
[8] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[9] XU Jinghui, LI Longfei, LIU Xingang, LI Hui, FENG Qiang. Thermal-Stress Coupling Effect on Microstructure Evolution of a Fourth-Generation Nickel-Based Single-Crystal Superalloy at 1100oC[J]. 金属学报, 2021, 57(2): 205-214.
[10] GUO Qianying, LI Yanmo, CHEN Bin, DING Ran, YU Liming, LIU Yongchang. Effect of High-Temperature Ageing on Microstructure and Creep Properties of S31042 Heat-Resistant Steel[J]. 金属学报, 2021, 57(1): 82-94.
[11] WU Yupeng, ZHANG Bo, LI Jingming, ZHANG Shuangnan, WU Ying, WANG Yumin, CAI Guixi. Ultrasonic Detection for Fiber Broken in Aero-Engine Integral Bladed Ring[J]. 金属学报, 2020, 56(8): 1175-1184.
[12] LIU Tian, LUO Rui, CHENG Xiaonong, ZHENG Qi, CHEN Leli, WANG Qian. Investigations on the Accelerated Creep Testing of Alumina-Forming Austenitic Stainless Steel[J]. 金属学报, 2020, 56(11): 1452-1462.
[13] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[14] HU Bin,LI Shusuo,PEI Yanling,GONG Shengkai,XU Huibin. Influence of Small Misorientation from <111> on Creep Properties of a Ni-Based Single Crystal Superalloy[J]. 金属学报, 2019, 55(9): 1204-1210.
[15] Wenshu TANG,Junfeng XIAO,Yongjun LI,Jiong ZHANG,Sifeng GAO,Qing NAN. Effect of Re-Heat Rejuvenation Treatment on γ′ Microstructure of Directionally SolidifiedSuperalloy Damaged by Creep[J]. 金属学报, 2019, 55(5): 601-610.
No Suggested Reading articles found!