Please wait a minute...
Acta Metall Sin  2013, Vol. 49 Issue (12): 1532-1542    DOI: 10.3724/SP.J.1037.2013.00320
Current Issue | Archive | Adv Search |
THREE—DIMENSIONAL MATHEMATICAL SHAPE MODEL AND PROCESS RESEARCH OF SPRAY—FORMED BILLET
YUAN Hao1), FAN Junfei2), REN Sanbing2), WANG Haowei1), ZHANG Yijie1)
1) State Key Lab of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240
2) Advanced Technology Institute, Baosteel Research Institute, Shanghai 201900
Cite this article: 

YUAN Hao, FAN Junfei, REN Sanbing, WANG Haowei, ZHANG Yijie. THREE—DIMENSIONAL MATHEMATICAL SHAPE MODEL AND PROCESS RESEARCH OF SPRAY—FORMED BILLET. Acta Metall Sin, 2013, 49(12): 1532-1542.

Download:  PDF(3878KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Spray forming is an advanced technology that is used to produce a variety of high—performance materials with the characteristics of rapid solidification. By properly controlling of spray forming parameters, it is possible to fabricate near—net—shaped preforms, such as rod—billets, strips, and tubes. During the billet spray forming process, the shape of deposit strongly influences the solidification and consequently end—product quality. Therefore, it is necessary to reveal the shape forming mechanism in spray forming process. In the present work, a three—dimensional (3D) model, tracing the coordinates of the moving surface of a growing spray—formed billet, has been formulated to predict the shape evolution of the general deposit. This geometric model takes into account geometrical process parameters in the whole spray forming process: mass flux and mass distribution, position of the atomizer, distance between atomizer and the preform, substrate withdrawal velocity and rotation speed. This makes it possible to model not only the growth of a Gaussian shaped deposit in which case the spray axis and the rotation axis coincide, but also the profile evolution as there is a spray angle between these two axes. For this purpose, “shadowing effect” must be taken into account as a core part of the surface evolution algorithm. On the basis of this 3D model, a timesaving and accurate methodology is established to determine the shadowing effect coefficient, using the “triangular element checking” algorithm coupled with back face culling (BFC). The transient shape modeling has been validated by numerical algorithms and experimental investigation, and has proved that the simulated billet profiles are in good agreement with the experimental data. The effect of spray forming parameters, such as spray distribution parameters, withdrawal velocity, initial eccentric distance, spray angle and angular velocity of rotation, are analyzed. According to the obtained simulation results, the most dominant parameters affecting the shape evolution of deposit are the spray distribution parameters, withdrawal velocity, and initial eccentric distance. It is also found that the spray angle mainly affects the profile  of the top transition region of the rod. The effect of the angular velocities of substrate on the shape evolution of the deposit is not significant. Finally, the maximum withdrawal velocity and maximum initial eccentric distance are deduced based on the analysis of shape form mechanism, which can be used to guide the process optimization during spray forming.

Key words:  spray forming      numerical simulation      rod—billet      three—dimensional modeling      shadowing effect     
Received:  13 June 2013     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00320     OR     https://www.ams.org.cn/EN/Y2013/V49/I12/1532

[1] Grant P S.  Prog Mater Sci, 1995; 39: 497

[2] Cui C S, Zhang J G.  Shanghai Met, 2012; 34(3): 39
(崔成松, 章靖国. 上海金属, 2012; 34(3): 39)
[3] Cui C S, Zhang J G.  Shanghai Met, 2012; 34(2): 42
(崔成松, 章靖国. 上海金属, 2012; 34(2): 42)
[4] Zhang J S, Xiong B Q, Cui H.  Spray Forming Rapid Solidification Technology Principles and Applications. Beijing: Science Press, 2008: 1
(张济山, 熊柏青, 崔华. 喷射成形快速凝固技术原理与应用. 北京: 科学出版社, 2008: 1)
[5] Lavernia E J, Grant N J.  Mater Sci Eng, 1988; 98: 381
[6] Singer A R E.  Powder Metall, 1982; 25: 195
[7] Lavernia E J, Xu Q.  J Jpn Inst Light Met, 2000; 50: 479
[8] Frigaard I A.  J Eng Math, 1996; 30: 417
[9] Frigaard I A, Scherzer O.  Siam J Appl Math, 1997; 57: 649
[10] Annavarapu S, Apelian D, Lawley A.  Metall Trans, 1990; 21A: 3237
[11] Mathur P, Annavarapu S, Apelian D, Lawley A.  Mater Sci Eng, 1991; A142: 261
[12] Kang S N, Chang D H.  Mater Sci Eng, 1999; A260: 161
[13] Lin Y J, Bobrow J E, White D R, Lavernia E J.  Metall Mater Trans, 2000; 31A: 2917
[14] Seok H K, Yeo D H, Oh K H, Lee H I, Ra H Y.  Metall Mater Trans, 1998; 29B: 699
[15] Hattel J H, Pryds N H, Pedersen T B.  Mater Sci Eng, 2004; A383: 184
[16] Hattel J H, Pryds N H.  Acta Mater, 2004; 52: 5275
[17] Pryds N H, Hattel J H, Pedersen T B, Thorborg J.  Acta Mater, 2002; 50: 4075
[18] Cui C S, Fritsching U, Schuz A, Li Q C.   Acta Mater, 2005; 50: 2765
[19] Cao F Y, Wu P L, Ning Z L, Zhao W J, Sun J F.  Rare Met, 2007; 26: 30
[20] Cui C S, Fritsching U, Schulz A.  Metall Mater Trans, 2007; 38B: 333
[21] Choi D S.  J Mech Sci Technol, 2010; 24: 1091
[22] Mi J, Grant P S.  Acta Mater, 2008; 56: 1588
[23] Cao F Y, Li P J, Fan H B, Cui C S, Li Q C.  Mater Sci Technol, 2003; 11: 50
(曹福洋, 李培杰, 范洪波, 崔成松, 李庆春. 材料科学与工艺, 2003; 11: 50)
[24] Zhao J Z, Liu D M, Wang J T, Ye H Q. Spec Cast Nonferrous Alloys, 2004;(4): 1
(赵九洲, 刘东明, 王江涛, 叶恒强. 特种铸造及有色合金, 2004; (4): 1)
[25] Liu D M, Zhao J Z, Ye H Q.  Acta Metall Sin, 2004; 40: 873
(刘东明, 赵九洲, 叶恒强. 金属学报, 2004; 40: 873)
[26] Fan W J, Zhang Y.  J Inner Mongolia Univ Sci Technol, 2007; 26: 203
(樊文军, 张胤. 内蒙古科技大学学报 2007; 26: 203)
[27] Markus S, Cui C, Fritsching U.  Mater Sci Eng, 2004; A383: 166
[28] Mi J, Grant P S, Fritsching U, Belkessam O, Garmendia I, Landaberea A.  Mater Sci Eng, 2008; A477: 2
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
[5] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[7] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[8] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[9] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[10] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[11] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[12] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[13] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[14] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[15] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
No Suggested Reading articles found!