Please wait a minute...
Acta Metall Sin  2008, Vol. 44 Issue (9): 1057-1062     DOI:
Research Articles Current Issue | Archive | Adv Search |
Effect of Transverse Convection Induced by Density Differences on Bidirectional Solidification of Metal-Gas Eutectic
;;
清华大学机械工程系
Cite this article: 

. Effect of Transverse Convection Induced by Density Differences on Bidirectional Solidification of Metal-Gas Eutectic. Acta Metall Sin, 2008, 44(9): 1057-1062 .

Download:  PDF(1473KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  By use of the bidirectional solidification process of metal-gas eutectic, at an atmosphere of high-pressure hydrogen or gas mixture of hydrogen and argon, a special type of porous material—porous metal with radial pore distribution, can be fabricated. During the solidification of metal-gas eutectic, the volume of the solidifying metal expands due to the evolution of gas pores. This volume expansion leads to a severe transverse convection in front of the solidification interface in the bidirectional solidification process. Experimental results show that during the solidification, the transverse convection in front of the solidifying interface will affect the growth direction of the gas pores, promote gas bubble escaping, and degrade the uniformity of gas pore distribution. By properly designing the structure of the casting mould and choosing appropriate processing parameters, the severe harmful transverse convection in front of the solidification interface can be depressed or limited to a lower level, and high quality radial-type porous magnesium with uniform pore distribution can be obtained.
Key words:  Bidirectional solidification      Porous metal      Metal/gas eutectic      Convection      
Received:  03 March 2008     
ZTFLH:  TG249.6  
  TG146  
Service
E-mail this article
Add to citation manager
E-mail Alert
RSS
Articles by authors

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2008/V44/I9/1057

[1]Shapovalov V I.US Pat,No.5,181,549,1993
[2]Banhart J.Prog Mater Sci,2001;46:559
[3]Nakajima H.Prog Mater Sci,2007;52:1091
[4]Zheng Y.Master Thesis,MIT,Cambridge,MA,1995
[5]Zhang H W.Doctoral Dissertation,Tsinghua University, Beijing,2006 (张华伟.清华大学博士学位论文,北京,2006)
[6]Zhang H W,Li Y X,Liu Y.Acta Metall Sin,2006;42: 1165 (张华伟,李言祥,刘源.金属学报,2006;42:1165)
[7]Zhang H W,Li Y X,Liu Y.Acta Metall Sin,2006;42: 1171 (张华伟,李言祥,刘源.金属学报,2006;42:1171)
[8]Wang X,Li Y X,Liu Y.Acta Metall Sin,2006;42:1075 (王雪,李言祥,刘源.金属学报,2006;42:1075)
[9]Wang X,Li Y X,Liu Y.Acta Metall Sin,2007;43:6 (王雪,李言祥,刘源.金属学报,2007;43:6)
[10]Wang X,Li Y X,Liu Y.Mater Sci Eng,2007;A444:306
[11]Shapovalov V I.Mater Sci Forum,2007;539-543:1183
[12]Liu Y,Li Y X.Scr Mater,2003;49:379
[13]Shapovalov V I.Adv Eng Mater,2004;6:407
[14]Shapovalov V I.USSR Pat,No.3,032,290,1981
[1] XU Wence, CUI Zhenduo, ZHU Shengli. Recent Advances in Open-Cell Porous Metal Materials for Electrocatalytic and Biomedical Applications[J]. 金属学报, 2022, 58(12): 1527-1544.
[2] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
[3] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
[4] Chenglin LIU, Haijun SU, Jun ZHANG, Taiwen HUANG, Lin LIU, Hengzhi FU. Effect of Electromagnetic Field on Microstructure ofNi-Based Single Crystal Superalloys[J]. 金属学报, 2018, 54(10): 1428-1434.
[5] Hua ZHONG,Chuanjun LI,Jiang WANG,Zhongming REN,Yunbo ZHONG,Weidong XUAN. EFFECT OF A HIGH STATIC MAGNETIC FIELD ON MICROSEGREGATION OF DIRECTIONALLY SOLIDIFIED Al-4.5Cu ALLOY[J]. 金属学报, 2016, 52(5): 575-582.
[6] Mingfan QI, Yonglin KANG, Bing ZHOU, Guoming ZHU, Huanhuan ZHANG. MICROSTRUCTURES AND PROPERTIES OF AZ91D MAGNESIUM ALLOY PRODUCED BY FORCED CONVECTION MIXING RHEO-DIECASTING PROCESS[J]. 金属学报, 2015, 51(6): 668-676.
[7] LI Zaijiu, JIN Qinglin, YANG Tianwu, ZHOU Rong, JIANG Yehua. A THERMODYNAMIC MODEL FOR DIRECTIONAL SOLIDIFICATION OF METAL-HYDROGEN EUTECTIC[J]. 金属学报, 2014, 50(4): 507-514.
[8] WANG Lingshui, SHEN Jun, SHANG Zhao, WANG Lei, FU Hengzhi. PHASE AND MICROSTRUCTURE SELECTION IN DIRECTIONALLY  SOLIDIFIED  PERITECTIC  ALLOYS UNDER CONVECTION CONDITION[J]. 金属学报, 2013, 49(7): 822-830.
[9] XUAN Weidong, REN Zhongming, LI Chuanjun, REN Weili, CHEN Chao, YU Zhan. EFFECT OF LONGITUDINAL MAGNETIC FIELD ON THE MICROSTRUCTURE OF DIRECTIONALLY SOLIDIFIED SUPERALLOY DZ417G WITH DIFFERENT SIZES[J]. 金属学报, 2012, 48(5): 629-635.
[10] CHEN Liutao ZHANG Huawei LIU Yuan LI Yanxiang. EXPERIMENTAL RESEARCH ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK[J]. 金属学报, 2012, 48(3): 329-333.
[11] CHEN Liutao ZHANG Huawei LIU Yuan LI Yanxiang. THEORETICAL STUDY ON HEAT TRANSFER PERFORMANCE OF DIRECTIOANLLY SOLIDIFIED POROUS COPPER HEAT SINK[J]. 金属学报, 2012, 48(11): 1374-1380.
[12] SHEN Yu REN Zhongming LI Xi, REN Weili. EFFECT OF LONGITUDINAL MAGNETIC FIELD ON THE MICROSTRUCTURE OF DIRECTIONALLY SOLIDIFIED Al-40%Cu HYPEREUTECTIC ALLOY[J]. 金属学报, 2011, 47(4): 417-422.
[13] LUO Liangshun ZHANG Yumin SU Yanqing WANG Xin GUO Jingjie FU Hengzhi . CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS
I. Experimental Result
[J]. 金属学报, 2011, 47(3): 275-283.
[14] LUO Liangshun FU Hengzhi ZHANG Yumin LI Xinzhong SU Yanqing GUO Jingjie. CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS
II. Theoretical Analysis
[J]. 金属学报, 2011, 47(3): 284-290.
[15] LIU Yuan LI Yanxiang LIU Runfa ZHOU Rong JIANG Yehua LI Zhenhua. THEORETICAL ANALYSIS ON EFFECT OF TRANSFERENCE VELOCITY ON STRUCTURE OF POROUS METALS FABRICATED BY CONTINUOUS CASTING GASAR PROCESS[J]. 金属学报, 2010, 46(2): 129-134.
No Suggested Reading articles found!