Please wait a minute...
Acta Metall Sin  2004, Vol. 40 Issue (4): 342-346     DOI:
Research Articles Current Issue | Archive | Adv Search |
HYDROGEN--INDUCED DELAYED FRACTURE IN TiNi
HE Jianying; GAO Kewei; SU Yanjing; QIAO Lijie; CHU Wuyang
Department of Material Physics; University of Science and Technology Beijing; Beijing 100083
Cite this article: 

HE Jianying; GAO Kewei; SU Yanjing; QIAO Lijie; CHU Wuyang. HYDROGEN--INDUCED DELAYED FRACTURE IN TiNi. Acta Metall Sin, 2004, 40(4): 342-346 .

Download:  PDF(170KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Hydrogen--induced delayed fracture during dynamic charging of TiNi shape memory alloy, and the role of atomic hydrogen, hydrogen--induced martensite and hydride in hydrogen--induced delayed fracture have been investigated. The results show that hydrogen--induced delayed fracture in TiNi alloy could occur, and the normalized threshold stress intensity factor decreased linearly with increasing the total hydrogen concentration, i.e., KIH/KIC=2.01-0.25lnCT. The content of hydride increased continuously during dynamic charging, and the fracture toughness of the TiNi alloy decreased gradually, which is the main cause of hydrogen--induced delayed fracture. The role of atomic hydrogen and hydrogen--induced martensite in hydrogen--induced delayed fracture was very small.
Key words:  TiNi shape memory alloy      hydrogen--induced delayed fracture      atomic hydrogen      
Received:  10 April 2003     
ZTFLH:  TG139.6  

URL: 

https://www.ams.org.cn/EN/     OR     https://www.ams.org.cn/EN/Y2004/V40/I4/342

[1] Buchner H, Gutjahr M A, Beccu K D, Saufferer H. Z Met-all, 1972; 63: 497
[2] Soubeyroux J L, Fruchart D. J Alloys Compds, 1993; 196:127
[3] Adachi Y, Wade N, Hosoi Y. J Jpn Inst Metal, 1990; 54:525
[4] Rotini A, Biscarini A, Campanella R, Coluzzi B, MazzolaiG, Mazzolai F M. Scr Mater, 2001; 44: 719
[5] Shorshorov M Kh, Stepanov I A, Flomenblit Yun, TravkinV V. Phys Met Metall, 1985; 60: 109
[6] Yokoyama K, Hamada K, Asaoka K. Mater Trans, 2001;42: 141
[7] Asaoka K, Yokoyama K, Nagumo M. Metall Mater Trans,2002; 32A: 495
[8] Yokoyama K, Watabe S, Hamada K, Sqkai J, Asaoka K,Nagumo M. Mater Sci Eng, 2003; 741A: 91
[9] Chu W Y,Qiao L J,Chen Q Z,Gao K W. Fracture andDelayed Fracture,Beijing:Science Press,2001:126(褚武扬,乔利杰,陈奇志,高克玮.断裂与滞后断裂,北京:科学出版社,2001:126)
[10] Pan C, Su Y J, Chu W Y, Li Z B, Qiao L J. CorrosionSci, 2002; 44: 1983
[11] Pan C, Chu W Y, Li Z B, Su Y J, Qiao L J. Sci in China,2002; 45E: 175
[12] Gao K W, Wang Y B, Chu W Y. Sci m China, 1999; 42E:511
[13] He J Y,Gao K W,Qiao L J,Chu W Y.Acta Metall Sin,2004;40:291(何健英,高克玮,乔利杰,褚武扬,金属学报,2004;40:291)
[14] Zhang T, Chu W Y, Gao K W, Qiao L J. Mater Sci Eng, 2003; A347: 291
[1] CHEN Fei, QIU Pengcheng, LIU Yang, SUN Bingbing, ZHAO Haisheng, SHEN Qiang. Microstructure and Mechanical Properties of NiTi Shape Memory Alloys by In Situ Laser Directed Energy Deposition[J]. 金属学报, 2023, 59(1): 180-190.
[2] ZUO Liang, LI Zongbin, YAN Haile, YANG Bo, ZHAO Xiang. Texturation and Functional Behaviors of Polycrystalline Ni-Mn-X Phase Transformation Alloys[J]. 金属学报, 2021, 57(11): 1396-1415.
[3] Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys[J]. 金属学报, 2019, 55(3): 369-375.
[4] ZHANG Chengyan, SONG Fan, WANG Shanling, PENG Huabei, WEN Yuhua. EFFECT MECHANISM OF Mn CONTENTS ON SHAPE MEMORY OF Fe-Mn-Si-Cr-Ni ALLOYS[J]. 金属学报, 2015, 51(2): 201-208.
[5] ZHANG Huibo JIN Wei YANG Rui. 3D FINITE ELEMENT SIMULATION OF PULL–OUT FORCE OF TiNiFe SHAPE MEMORY PIPE COUPLING WITH INNER CONVEX[J]. 金属学报, 2012, 48(12): 1520-1524.
[6] ZHENG Bin ZHOU Wei WANG Yinong QI Min. MARTENSITE TRANSFORMATION IN TiNi ALLOY UNDER COUPLING TEMPERATURE AND HIGH MAGNETIC FIELD USING LANDAU THEORY MODEL[J]. 金属学报, 2009, 45(1): 37-42.
[7] . High magnetic field treatment on variants and magnetostrain in ferromagnetic shape memory alloy Ni50Mn28.5Ga21.5 single crystal[J]. 金属学报, 2008, 44(3): 302-306 .
[8] Gao-Feng WANG; Lin SONG. Magnetocaloric effect on low field in non-stoichiometric MnFe(P,Si,Ge) alloys[J]. 金属学报, 2007, 43(8): 889-892 .
[9] WEN Yuhua; ZHANG Wei; LI Ning; XIE Wenling; WANG Shanhua. Influence of Precipitated Direction of the Second Phase on Shape Memory[J]. 金属学报, 2006, 42(11): 1217-1220 .
[10] Fenghua Luo. Influence of Sb addition on Martensitic and Magnetic Transformation in β+γ Two-phase Based Co-Ni-Al Shape Memory Alloy[J]. 金属学报, 2006, 42(8): 785-791 .
[11] LUO Fenghua; CHEN Jiayan; OIKAWA Katsunari; ISHIDA Kiyohito. Martensitic Transformation and Magnetic Transition of Ni52Ga28Fe20-xCox Alloy[J]. 金属学报, 2006, 42(1): 93-98 .
[12] . [J]. 金属学报, 2005, 41(8): 795-798 .
[13] LUO Fenghua; OIKAWA Katsunari; ISHIDA Kiyohito. Martensitic Transformation and Magnetic Transition of Co41Ni32Al27-xSix Alloy[J]. 金属学报, 2005, 41(7): 680-684 .
[14] YANG Yazhuo; ZHAO Xinqing; MENG Lingjie; YANG Shanglin; XU Huibin. Microstructure and Transformation Behavior of Ni-Ti-Nb Shape Memory Alloys with Low Nb Content[J]. 金属学报, 2005, 41(6): 627-632 .
[15] DENG Lifen; LI Yan; JIANG Chengbao; XU Huibin. MARTENSITIC TWINS REORIENTATION AND STRESS-STRAIN BEHAVIOR OF FERROMAGNETIC SHAPE MEMORY ALLOYS Ni-Mn-Ga SINGLE CRYSTALS[J]. 金属学报, 2004, 40(12): 1290-1294 .
No Suggested Reading articles found!