|
|
Research Advances in High Temperature Corrosion of Ni-Cr Alloys in CO2-Rich Environments |
XIE Yun1( ), Zhang Jianqiang2, PENG Xiao1 |
1 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China 2 School of Materials Science and Engineering, University of New South Wales, Sydney 2052, Australia |
|
Cite this article:
XIE Yun, Zhang Jianqiang, PENG Xiao. Research Advances in High Temperature Corrosion of Ni-Cr Alloys in CO2-Rich Environments. Acta Metall Sin, 2024, 60(6): 731-742.
|
Abstract The thermal power generation industry in China is facing heavy pressure from environmental protection sectors as the “emission peak-carbon neutrality” goal has been proposed. Oxyfuel combustion and operating with high steam parameters are considered promising technologies that can effectively reduce CO2 emissions from coal-fired power plants. However, using these two technologies, the currently used ferritic/martensitic heat-resistant steels and austenitic stainless steels in traditional boilers cannot meet the requirements of good creep strength and corrosion resistance to hot CO2-rich gasses. Thus, nickel-based alloys must be considered. Given that flue gasses related to oxyfuel combustion are characterized by high CO2 concentrations, this work reviews recent research progress on the high-temperature corrosion of Ni-Cr alloys in CO2-rich gasses. Herein, the effect of CO2 on protective Cr2O3 scale formation is introduced, and the related carburization mechanism caused by CO2 ingress is clarified. Moreover, the impacts of H2O(g), SO2, temperature, and alloying elements on the high temperature resistance of Ni-Cr alloys in CO2-rich gasses are summarized. Based on the current findings, future research on high-temperature corrosion of Ni-Cr alloys in CO2-rich gases should focus on the following key points, such as analyzing the microstructure of Cr2O3 scales formed in different gasses; elucidating the interaction of CO2, H2O(g), and SO2 molecules with rare earth elements at grain boundaries of oxide scales; and investigating the effect of HCl(g) impurities in CO2-rich gasses on Cr2O3 scaling of Ni-Cr alloys.
|
Received: 27 December 2023
|
|
Fund: National Natural Science Foundation of China(52301089);Jiangxi Provincial Key Research and Development Program(20232BBE50007);Jiangxi Provincial Natural Science Foundation(20224BAB214018) |
Corresponding Authors:
XIE Yun, associate professor, Tel: 15827996962, E-mail: yun.xie@nchu.edu.cn
|
1 |
Zhang S H, Hu K, Liu X, et al. Corrosion-erosion mechanism and research prospect of bare materials and protective coatings for power generation boiler [J]. Acta Metall. Sin., 2022, 58: 272
doi: 10.11900/0412.1961.2021.00464
|
|
张世宏, 胡 凯, 刘 侠 等. 发电锅炉材料与防护涂层的磨蚀机制与研究展望 [J]. 金属学报, 2022, 58: 272
doi: 10.11900/0412.1961.2021.00464
|
2 |
He H S, Yu L M, Liu C X, et al. Research progress of a novel martensitic heat-resistant steel G115 [J]. Acta Metall. Sin., 2022, 58: 311
doi: 10.11900/0412.1961.2021.00185
|
|
何焕生, 余黎明, 刘晨曦 等. 新一代马氏体耐热钢G115的研究进展 [J]. 金属学报, 2022, 58: 311.
doi: 10.11900/0412.1961.2021.00185
|
3 |
Stanger R, Wall T, Spörl R, et al. Oxyfuel combustion for CO2 capture in power plants [J]. Int. J. Greenhouse Gas Control, 2015, 40: 55
|
4 |
Zheng C G, Liu Z H, Xiang J, et al. Fundamental and technical challenges for a compatible design scheme of oxyfuel combustion technology [J]. Engineering, 2015, 1: 139
|
5 |
Liu J H. Research and development of oxy-fuel combustion for coal-fired boiler in China [J]. Therm. Power Gener., 2020, 49(7): 48
|
|
刘建华. 国内燃煤锅炉富氧燃烧技术进展 [J]. 热力发电, 2020, 49(7): 48
|
6 |
Bordenet B. Influence of novel cycle concepts on the high-temperature corrosion of power plants [J]. Mater. Corros., 2008, 59: 361
|
7 |
Buhre B J P, Elliott L K, Sheng C D, et al. Oxy-fuel combustion technology for coal-fired power generation [J]. Prog. Energy Combust. Sci., 2005, 31: 283
|
8 |
Syed A U, Simms N J, Oakey J E. Fireside corrosion of superheaters: Effects of air and oxy-firing of coal and biomass [J]. Fuel, 2012, 101: 62
|
9 |
Zeng Z, Natesan K, Cai Z, et al. Effect of coal ash on the performance of alloys in simulated oxy-fuel environments [J]. Fuel, 2014, 117: 133
|
10 |
Syed A U, Hussain T, Simms N J, et al. Microscopy of fireside corrosion on superheater materials for oxy-fired pulverised fuel power plants [J]. Mater. High Temp., 2012, 29: 219
|
11 |
Stein-Brzozowska G, Maier J, Scheffknecht G. Impact of the oxy-fuel combustion on the corrosion behavior of advanced austenitic superheater materials [J]. Energy Procedia, 2011, 4: 2035
|
12 |
Holcomb G R, Tylczak J, Meier G H, et al. Fireside corrosion in oxy-fuel combustion of coal [J]. Oxid. Met., 2013, 80: 599
|
13 |
Abellán J P, Olszewski T, Meier G H, et al. The oxidation behaviour of the 9% Cr steel P92 in CO2- and H2O-rich gases relevant to oxyfuel environments [J]. Int. J. Mater. Res., 2010, 101: 287
|
14 |
Huczkowski P, Najima S, Chyrkin A, et al. Corrosion behavior of austenitic stainless steels in oxidizing and reducing gases relevant to oxyfuel power plants [J]. JOM, 2018, 70: 1502
|
15 |
Zheng Y, Shirani Bidabadi M H, Yang L, et al. Pre-oxidation effect on oxidation behavior of F91 in carbon dioxide at 550oC [J]. Oxid. Met., 2018, 90: 317
|
16 |
Xi X T, Kong C, Zhang J Q. Effect of cyclic reaction on corrosion behavior of chromium-containing alloys in CO2 gas at 650oC [J]. Oxid. Met., 2020, 93: 131
|
17 |
Cao C, Jiang C Y, Lu J T, et al. Corrosion behavior of austenitic stainless steel with different Cr contents in 700oC coal ash/high sulfur flue-gas environment [J]. Acta Metall. Sin., 2022, 58: 67
|
|
曹 超, 蒋成洋, 鲁金涛 等. 不同Cr含量的奥氏体不锈钢在700℃煤灰/高硫烟气环境中的腐蚀行为 [J]. 金属学报, 2022, 58: 67
|
18 |
Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630-700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
|
|
刘正东, 陈正宗, 何西扣 等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
doi: 10.11900/0412.1961.2019.00419
|
19 |
Schütze M, Quadakkers W J. Future directions in the field of high-temperature corrosion research [J]. Oxid. Met., 2017, 87: 681
|
20 |
Zhao S Q, Xie X S, Smith G D. Corrosion of a new nickel base superalloy in coal-fired boiler environments [J]. Acta Metall. Sin., 2004, 40: 659
|
|
赵双群, 谢锡善, Smith G D. 新型镍基高温合金在模拟燃煤锅炉环境中的腐蚀 [J]. 金属学报, 2004, 40: 659
|
21 |
Mao J X. Latest development of high-temperature metallic materials in 700oC ultra-supercritical units [J]. Electr. Power Constr., 2013, 34(8): 69
|
|
毛健雄. 700℃超超临界机组高温材料研发的最新进展 [J]. 电力建设, 2013, 34(8): 69
doi: 10.3969/j.issn.1000-7229.2013.08. 013
|
22 |
Sun F, Gu Y F, Yan J B, et al. Phenomenological and microstructural analysis of intermediate temperatures creep in a Ni-Fe-based alloy for advanced ultra-supercritical fossil power plants [J]. Acta Mater., 2016, 102: 70
|
23 |
Xu Y X, Lu J T, Li W Y, et al. Effect and role of alloyed yttrium on the fireside corrosion behaviour of Ni-Fe based alloys for 750oC ultra-supercritical boiler applications [J]. Corros. Sci., 2018, 143: 148
|
24 |
Birks N, Meier G H, Pettit F S. Introduction to the High Temperature Oxidation of Metals [M]. 2nd Ed., Cambridge: Cambridge University Press, 2006: 115
|
25 |
Young D J, Zhang J Q. Alloy corrosion by hot CO2 gases [J]. JOM, 2018, 70: 1493
|
26 |
Rouillard F, Furukawa T. Corrosion of 9-12Cr ferritic-martensitic steels in high-temperature CO2 [J]. Corros. Sci., 2016, 105: 120
|
27 |
Huenert D, Kranzmann A. Impact of oxyfuel atmospheres H2O/CO2/O2 and H2O/CO2 on the oxidation of ferritic-martensitic and austenitic steels [J]. Corros. Sci., 2011, 53: 2306
|
28 |
Meier G H, Jung K, Mu N, et al. Effect of alloy composition and exposure conditions on the selective oxidation behavior of ferritic Fe-Cr and Fe-Cr-X alloys [J]. Oxid. Met., 2010, 74: 319
|
29 |
Nguyen T D, Zhang J Q, Young D J. Growth of Cr2O3 blades during alloy scaling in wet CO2 gas [J]. Corros. Sci., 2018, 133: 432
|
30 |
Nguyen T D, La Fontaine A, Cairney J M, et al. Effects of Si, Mn, and water vapour on the microstructure of protective scales grown on Fe-20Cr in CO2 gas [J]. Mater. High Temp., 2018, 35: 22
|
31 |
Yu C, Nguyen T D, Zhang J Q, et al. Sulfur effect on corrosion behavior of Fe-20Cr-(Mn, Si) and Fe-20Ni-20Cr-(Mn, Si) in CO2-H2O at 650oC [J]. J. Electrochem. Soc., 2016, 163: C106
|
32 |
Oleksak R P, Tylczak J H, Teeter L, et al. High-temperature corrosion of chromia-forming Ni-based alloys in CO2 containing impurities [J]. High Temp. Corros. Mater., 2023, 100: 597
|
33 |
Oleksak R P, Tylczak J H, Holcomb G R, et al. High temperature oxidation of Ni alloys in CO2 containing impurities [J]. Corros. Sci., 2019, 157: 20
|
34 |
Zeng Z, Natesan K, Cai Z, et al. Effects of calcium in ash on the corrosion performance of Ni-based alloys in simulated oxy-fuel environment [J]. Fuel, 2016, 178: 10
|
35 |
Pan P Y, Li T Y, Wang Y Z, et al. Effect of temperature on hot corrosion of nickel-based alloys for 700oC A-USC power plants [J]. Corros. Sci., 2022, 203: 110350
|
36 |
Jiang C Y, Xie Y, Kong C, et al. Corrosion behaviour of Ni-Cr alloys in mixed oxidising gases at 650oC [J]. Corros. Sci., 2020, 174: 108801
|
37 |
Xie Y, Zhang J Q, Young D J. Temperature effect on oxidation behavior of Ni-Cr alloys in CO2 gas atmosphere [J]. J. Electrochem. Soc., 2017, 164: C285
|
38 |
Nguyen T D, Xie Y, Ding S J, et al. Oxidation behavior of Ni-Cr alloys in CO2 at 700oC [J]. Oxid. Met., 2017, 87: 605
|
39 |
Wagner C. Reaktionstypen bei der oxydation von legierungen [J]. Z. Elektrochem., 1959, 63: 772
|
40 |
Rapp R A. The transition from internal to external oxidation and the formation of interruption bands in silver-indium alloys [J]. Acta Metall., 1961, 9: 730
|
41 |
Wagner C. Theoretical analysis of the diffusion processes determining the oxidation rate of alloys [J]. J. Electrochem. Soc., 1952, 99: 369
|
42 |
Xie Y, Zhang J Q, Young D J. Water vapour effects on corrosion of Ni-Cr alloys in CO2 gas at 650oC [J]. Corros. Sci., 2018, 136: 311
|
43 |
Wagner C. The theory of the warm-up process [J]. Z. Phys. Chem., 1933, 21: 25
|
44 |
Nguyen T D, Zhang J Q, Young D J. Microstructures of chromia scales grown in CO2 [J]. Mater. High Temp., 2015, 32: 16
|
45 |
Young D J, Nguyen T D, Felfer P, et al. Penetration of protective chromia scales by carbon [J]. Scr. Mater., 2014, 77: 29
|
46 |
Zhu D D, Chen J M, Chen J Z, et al. Atomic origin of CO2-promoted oxidation dynamics of chromia-forming alloys [J]. Acta Mater., 2024, 264: 119578
|
47 |
Young D J. High Temperature Oxidation and Corrosion of Metals [M]. 2nd Ed., Amsterdam: Elsevier, 2016: 435
|
48 |
Li T F. High Temperature Oxidation and Thermal Corrosion of Metals [M]. Beijing: Chemical Industry Press, 2003: 252
|
|
李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003: 252
|
49 |
Nguyen T D, Zhang J Q, Young D J. Effects of Si, Al and Ti on corrosion of Ni-20Cr and Ni-30Cr alloys in Ar-20CO2 at 700oC [J]. Corros. Sci., 2018, 130: 161
|
50 |
Pirón Abellán J, Olszewski T, Penkalla H J, et al. Scale formation mechanisms of martensitic steels in high CO2/H2O-containing gases simulating oxyfuel environments [J]. Mater. High Temp., 2009, 26: 63
|
51 |
Nguyen T D, Zhang J Q, Young D J. Martensite formation in Fe-9Cr alloys exposed to low carbon activity gas [J]. Scr. Mater., 2013, 69: 9
|
52 |
Gheno T, Monceau D, Zhang J Q, et al. Carburisation of ferritic Fe-Cr alloys by low carbon activity gases [J]. Corros. Sci., 2011, 53: 2767
|
53 |
Subramanian G O, Lee H J, Kim S H, et al. Corrosion and carburization behaviour of Ni-xCr binary alloys in a high-temperature supercritical-carbon dioxide environment [J]. Oxid. Met., 2018, 89: 683
|
54 |
Lee H J, Kim H, Kim S H, et al. Corrosion and carburization behav-ior of chromia-forming heat resistant alloys in a high-temperature supercritical-carbon dioxide environment [J]. Corros. Sci., 2015, 99: 227
|
55 |
Wolf I, Grabke H J. A study on the solubility and distribution of carbon in oxides [J]. Solid State Commun., 1985, 54: 5
|
56 |
Wolf I, Grabke H J, Schmidt P. Carbon transport through oxide scales on Fe-Cr alloys [J]. Oxid. Met., 1988, 29: 289
|
57 |
Chandra K, Kranzmann A, Saliwan Neumann R, et al. High temperature oxidation behavior of 9-12%Cr ferritic/martensitic steels in a simulated dry oxyfuel environment [J]. Oxid. Met., 2015, 83: 291
|
58 |
Otsuka N. Carburization of 9%Cr steels in a simulated oxyfuel corrosion environment [J]. Oxid. Met., 2013, 80: 565
|
59 |
Shen J, Liu S, Guo X H, et al. Simultaneous oxidation and carburization of a Fe-9Cr alloy under different oxygen pressures at 800oC [J]. Corros. Sci., 2017, 129: 1
|
60 |
Nguyen T D, La Fontaine A, Yang L M, et al. Atom probe study of impurity segregation at grain boundaries in chromia scales grown in CO2 gas [J]. Corros. Sci., 2018, 132: 125
|
61 |
Becker P, Young D J. Carburization resistance of nickel-base, heat-resisting alloys [J]. Oxid. Met., 2007, 67: 267
|
62 |
Ani M H B, Kodama T, Ueda M, et al. The effect of water vapor on high temperature oxidation of Fe-Cr alloys at 1073 K [J]. Mater. Trans., 2009, 50: 2656
|
63 |
Essuman E, Meier G H, Żurek J, et al. The effect of water vapor on selective oxidation of Fe-Cr alloys [J]. Oxid. Met., 2008, 69: 143
|
64 |
Essuman E, Meier G H, Żurek J, et al. Enhanced internal oxidation as trigger for breakaway oxidation of Fe-Cr alloys in gases containing water vapor [J]. Scr. Mater., 2007, 57: 845
|
65 |
Liu L, Yang Z G, Zhang C, et al. Effect of water vapour on the oxidation of Fe-13Cr-5Ni martensitic alloy at 973 K [J]. Corros. Sci., 2012, 60: 90
|
66 |
Young D J, Pint B A. Chromium volatilization rates from Cr2O3 scales into flowing gases containing water vapor [J]. Oxid. Met., 2006, 66: 137
|
67 |
Young D J. Effects of water vapour on the oxidation of chromia formers [J]. Mater. Sci. Forum, 2008, 595-598: 1189
|
68 |
Holcomb G R. Calculation of reactive-evaporation rates of chromia [J]. Oxid. Met., 2008, 69: 163
|
69 |
Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam [J]. Int. Mater. Rev., 2010, 55: 129
|
70 |
Essuman E, Meier G H, Zurek J, et al. Protective and non-protective scale formation of NiCr alloys in water vapour containing high- and low-pO2 gases [J]. Corros. Sci., 2008, 50: 1753
|
71 |
Mu N, Jung K Y, Yanar N M, et al. Water vapor effects on the oxidation behavior of Fe-Cr and Ni-Cr alloys in atmospheres relevant to oxy-fuel combustion [J]. Oxid. Met., 2012, 78: 221
|
72 |
Mu N, Jung K, Yanar N M, et al. The effects of water vapor and hydrogen on the high-temperature oxidation of alloys [J]. Oxid. Met., 2013, 79: 461
|
73 |
Nguyen T D, Zhang J Q, Young D J. Effects of Si, Al and Ti on corrosion of Ni-20Cr and Ni-30Cr alloys in Ar-20CO2-20H2O gas at 700oC [J]. Corros. Sci., 2020, 170: 108702
|
74 |
Xie Y. Corrosion behaviour of Ni-Cr-(Fe) alloys in dry and wet CO2 at high temperatures [D]. Sydney: The University of New South Wales, 2018
|
75 |
Xie Y, Nguyen T D, Zhang J Q, et al. Corrosion behaviour of Ni-Cr alloys in wet CO2 atmosphere at 700 and 800oC [J]. Corros. Sci., 2019, 146: 28
|
76 |
Auchi M, Hayashi S, Toyota K, et al. Effect of water vapor on the high-temperature oxidation of pure Ni [J]. Oxid. Met., 2012, 78: 51
|
77 |
Hamdani F, Abe H, Ter-Ovanessian B, et al. Effect of chromium content on the oxidation behavior of Ni-Cr model alloys in superheated steam [J]. Metall. Mater. Trans., 2015, 46A: 2285
|
78 |
Jiang C Y, Zhang J Q, Young D J. The effect of water vapor on NiO formation by Ni-Cr alloys at 650oC (HTCPM focus issue, FNS-111) [J]. Oxid. Met., 2021, 96: 57
|
79 |
Chen J R, Jiang C Y, Zhang J Q. Corrosion behaviors of Ni-Cr alloys in O2, H2O and H2O + O2 gases at 700oC and the effect of temperature [J]. High Temp. Corros. Mater., 2023, 100: 775
|
80 |
Anghel C, Hörnlund E, Hultquist G, et al. Gas phase analysis of CO interactions with solid surfaces at high temperatures [J]. Appl. Surf. Sci., 2004, 233: 392
|
81 |
Galerie A, Wouters Y, Caillet M. The kinetic behaviour of metals in water vapour at high temperatures: Can general rules be proposed? [J]. Mater. Sci. Forum, 2001, 369-372: 231
|
82 |
Zurek J, Young D J, Essuman E, et al. Growth and adherence of chromia based surface scales on Ni-base alloys in high- and low-pO2 gases [J]. Mater. Sci. Eng., 2008, A477: 259
|
83 |
Henry S, Mougin J, Wouters Y, et al. Characterization of chromia scales grown on pure chromium in different oxidizing atmospheres [J]. Mater. High Temp., 2000, 17: 231
|
84 |
Michalik M, Hänsel M, Zurek J, et al. Effect of water vapour on growth and adherence of chromia scales formed on Cr in high and low pO2-environments at 1000 and 1050oC [J]. Mater. High Temp., 2005, 22: 213
|
85 |
Simon D, Gorr B, Hänsel M, et al. Effect of in-situ gas changes on thermally grown chromia scales formed on Ni-25Cr alloy at 1000oC in atmospheres with and without water vapour [J]. Mater. High Temp., 2015, 32: 238
|
86 |
Galerie A, Petit J P, Wouters Y, et al. Water vapour effects on the oxidation of chromia-forming alloys [J]. Mater. Sci. Forum, 2011, 696: 200
|
87 |
Mrowec S, Przybylski K. Transport properties of sulfide scales and sulfidation of metals and alloys [J]. Oxid. Met., 1985, 23: 107
|
88 |
Huczkowski P, Young D J, Olszewski T, et al. Effect of sulphur on the oxidation behaviour of possible construction materials for heat exchangers in oxyfuel plants in the temperature range 550-700oC [J]. Oxid. Met., 2018, 89: 651
|
89 |
Huczkowski P, Najima S, Chyrkin A, et al. Corrosion behavior of candidate heat exchanger materials in oxidizing and reducing gases relevant to oxyfuel power plants [J]. Mater. High Temp., 2018, 35: 275
|
90 |
Huczkowski P, Chyrkin A, Singheiser L, et al. Corrosion behavior of candidate heat exchanger materials in oxidizing and reducing gases, relevant to oxyfuel combustion [A]. Corrosion 2016 [C]. Vancouver: NACE International, 2016: 7391
|
91 |
Pettit F. Hot corrosion of metals and alloys [J]. Oxid. Met., 2011, 76: 1
|
92 |
Gheno T, Gleeson B. On the hot corrosion of nickel at 700oC [J]. Oxid. Met., 2015, 84: 567
|
93 |
Lutz B S, Holcomb G R, Meier G H. Determination of the initiation and propagation mechanism of fireside corrosion [J]. Oxid. Met., 2015, 84: 353
|
94 |
Grégoire B, Montero X, Galetz M C, et al. Mechanisms of hot corrosion of pure nickel at 700oC: Influence of testing conditions [J]. Corros. Sci., 2018, 141: 211
|
95 |
Hu S S, Finklea H, Liu X B. A review on molten sulfate salts induced hot corrosion [J]. J. Mater. Sci. Technol., 2021, 90: 243
doi: 10.1016/j.jmst.2021.03.013
|
96 |
Meier G H. Invited review paper in commemoration of over 50 years of oxidation of metals: Current aspects of deposit-induced corrosion [J]. Oxid. Met., 2022, 98: 1
|
97 |
Castello P, Guttmann V, Farr N, et al. Laboratory-simulated fuel-ash corrosion of superheater tubes in coal-fired ultra-supercritical-boilers [J]. Mater. Corros., 2000, 51: 786
|
98 |
Hussain T, Syed A U, Simms N J. Fireside corrosion of superheater materials in coal/biomass co-fired advanced power plants [J]. Oxid. Met., 2013, 80: 529
|
99 |
Liu G M, Yang H C, Liang Q, et al. Corrosion behavior of the Ni-Cr-Fe base superalloy GH984G in a synthetic coal ash and flue gas environment [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 863
|
100 |
Hari P R, Arivazhagan N, Rao M N, et al. Hot corrosion studies on alloy 617 OCC in the context of its use in advanced ultra-supercritical (A-USC) power plants [J]. Trans. Indian Inst. Met., 2017, 70: 775
|
101 |
Stein-Brzozowska G, Flórez D M, Maier J, et al. Nickel-base superalloys for ultra-supercritical coal-fired power plants: Fireside corrosion. Laboratory studies and power plant exposures [J]. Fuel, 2013, 108: 521
|
102 |
Sha C H, Yang L M, Cairney J M, et al. Sulphur diffusion through a growing chromia scale and effects of water vapour [J]. Corros. Sci., 2023, 222: 111410
|
103 |
Yu C, Zhang J Q, Young D J. Corrosion behaviour of Fe-Cr-(Mn, Si) ferritic alloys in wet and dry CO2-SO2 atmospheres at 650oC [J]. Oxid. Met., 2018, 90: 97
|
104 |
Othman N K, Zhang J Q, Young D J. Temperature and water vapour effects on the cyclic oxidation behaviour of Fe-Cr alloys [J]. Corros. Sci., 2010, 52: 2827
|
105 |
Sánchez L, Hierro M P, Pérez F J. Effect of chromium content on the oxidation behaviour of ferritic steels for applications in steam atmospheres at high temperatures [J]. Oxid. Met., 2009, 71: 173
|
106 |
Xie Y, Du L X, Liang J J, et al. High temperature oxidation behavior of a novel γ′-strengthened CoNi-base superalloy [J]. High Temp. Corros. Mater., 2024, 101: 211
|
107 |
Pint B A, Thomson J K. Effect of oxy-firing on corrosion rates at 600-800oC [A]. Corrosion 2013 [C]. Orlando: NACE International, 2013: 2171
|
108 |
Pint B A. Simulated fireside corrosion of Ni-base alloys in oxy-fired conditions at 700-800oC [A]. ASME 2014 Symposium on Elevated Temperature Application of Materials for Fossil, Nuclear, and Petrochemical Industries [C]. Seattle: ASME, 2014: 176
|
109 |
Hussain T, Syed A U, Simms N J. Trends in fireside corrosion damage to superheaters in air and oxy-firing of coal/biomass [J]. Fuel, 2013, 113: 787
|
110 |
Saunders S R J, Monteiro M, Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review [J]. Prog. Mater. Sci., 2008, 53: 775
|
111 |
Raynaud G M, Rapp R A. In situ observation of whiskers, pyramids and pits during the high-temperature oxidation of metals [J]. Oxid. Met., 1984, 21: 89
|
112 |
Larsson K, Björkman H, Hjort K. Role of water and oxygen in wet and dry oxidation of diamond [J]. J. Appl. Phys., 2001, 90: 1026
|
113 |
Lu J T, Yang Z, Li Y, et al. Effect of alloying chemistry on fireside corrosion behavior of Ni-Fe-based superalloy for ultra-supercritical boiler applications [J]. Oxid. Met., 2018, 89: 609
|
114 |
Xu Y X, Lu J T, Yang X W, et al. Effect and role of alloyed Nb on the air oxidation behaviour of Ni-Cr-Fe alloys at 1000oC [J]. Corros. Sci., 2017, 127: 10
|
115 |
Xie Y, Zhang J Q, Young D J, et al. Effect of Fe on corrosion of Ni-20Cr and Ni-30Cr alloys in wet CO2 gas at 650 and 700oC [J]. Corros. Sci., 2019, 154: 129
|
116 |
Xie Y, Liang T, Zhang J Q, et al. Effects of Fe on oxidation of Ni-20Cr and Ni-30Cr alloys at 800oC in dry CO2 gas [J]. Corros. Sci., 2020, 173: 108777
|
117 |
Xie Y, Zhang J Q, Young D J. Effects of Fe on oxidation of Ni-20Cr and Ni-30Cr alloys at 800oC in wet CO2 gas [J]. Oxid. Met., 2020, 94: 219
|
118 |
Million B, Růžičková J, Vřešťál J. Diffusion in Fe-Ni-Cr alloys with an F.C.C. lattice [J]. Mater. Sci. Eng., 1985, 72: 85
|
119 |
Duh J G, Dayananda M A. Interdiffusion in Fe-Ni-Cr alloys at 1100oC [J]. Defect Diffus. Forum, 1991, 39: 1
|
120 |
Xu Y X, Lu J T, Huang J Y, et al. Impact of iron and chromium on coal ash corrosion behavior of Ni-Cr-Co based alloy for advanced ultra-supercritical power plants [J]. Corrosion, 2018, 74: 1446
|
121 |
Colwell J A, Rapp R A. Reactions of Fe-Cr and Ni-Cr alloys in CO/CO2 gases at 850 and 950oC [J]. Metall. Trans., 1986, 17A: 1065
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|