|
|
Synergistic Strengthening of High-Cr Martensitic Heat-Resistant Steel and Application of Thermo-Mechanical Treatments |
ZHANG Jingwen, YU Liming, LIU Chenxi, DING Ran, LIU Yongchang( ) |
State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China |
|
Cite this article:
ZHANG Jingwen, YU Liming, LIU Chenxi, DING Ran, LIU Yongchang. Synergistic Strengthening of High-Cr Martensitic Heat-Resistant Steel and Application of Thermo-Mechanical Treatments. Acta Metall Sin, 2024, 60(6): 713-730.
|
Abstract By virtue of their high thermal conductivity, low thermal expansion coefficient, and excellent high-temperature creep strength, high-Cr (mass fraction: 9%-12%) martensitic heat-resistant steels are the putative main constituents of the key equipment in ultra-supercritical (USC) power plants. However, the harsh environment caused by enhancing the steam parameters has recently challenged the high-temperature properties and the continually deteriorating creep strength during service has seriously threatened the safety and reliability of these steels. Previously, the creep strength of high-Cr martensitic heat-resistant steels was enhanced by optimizing the alloying compositions to promote the dispersed precipitation of strengthening phases, but the enhancement effect of reinforced single-precipitate strengthening is limited. In recent years, synergistic strengthening reinforcement of dislocation-precipitate-interface has emerged as a promising solution because the introduced dislocations promote various precipitations and the phase transformation can be controlled to tailor the lath structure, thus reinforcing the dislocation-precipitate-interface interactions and synergistically enhancing various strengthening effects. This paper overviews the synergistic strengthening of dislocation-precipitate-interface and microstructure control in high-Cr martensitic heat-resistant steels subjected to thermo-mechanical treatments. The review covers alloying optimization to improve the creep strength, the phase transformations during heating treatments, and the mechanism of microstructural degradation at high temperatures. It also compares the effects of single-precipitate and synergistic strengthening processes on creep strength and introduces microstructure control in welded joints by thermo-mechanical treatments in terms of creep failure behaviors. This research aims to guide the design and engineering applications of high-Cr martensitic heat-resistant steels and other precipitate-strengthening heat-resistant steels for USC power plants.
|
Received: 15 December 2023
|
|
Fund: National Natural Science Foundation of China(52034004);National Key Research and Development Project of China(2022YFB3705300) |
Corresponding Authors:
LIU Yongchang, professor, Tel: (022)85356410, E-mail: ycliu@tju.edu.cn
|
1 |
Liu Z D. Challenges to the critical steel technology in the course of the development of Chinese energy industries [J]. Spec. Steel Technol., 2010, 16(1): 1
|
|
刘正东. 中国能源工业发展对钢铁材料技术的挑战 [J]. 特钢技术, 2010, 16(1): 1
|
2 |
Liu Z D, Cheng S C, Tang G B, et al. The state-of-the-art of steel technology used for Chinese power plants and its future [J]. Iron Steel, 2011, 46(3): 1
|
|
刘正东, 程世长, 唐广波 等. 中国电站用钢技术现状和未来发展 [J]. 钢铁, 2011, 46(3): 1
|
3 |
Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630~700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
|
|
刘正东, 陈正宗, 何西扣 等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
doi: 10.11900/0412.1961.2019.00419
|
4 |
Gan Y. Suggestion to research and development of steel tubes/pipes for ultra super-critical fossil fuel power plants [J]. China Metall., 2006, 16(2): 1
|
|
干 勇. 关于研发超(超)临界火电机组高级锅炉管的建议 [J]. 中国冶金, 2006, 16(2): 1
|
5 |
Abe F. Creep rupture ductility of Gr.91 and Gr.92 at 550oC to 700oC [J]. Mater. High Temp., 2020, 37: 243
|
6 |
Maruyama K, Dewees D, Abe F, et al. Examinations of equations for creep rupture life with a large creep database on grade 91 steel [J]. Int. J. Press. Vessels Pip., 2022, 199: 104738
|
7 |
Hu Z F. Application Research and Evaluation of Martensitic Heat-Resistant Steels [M]. Beijing: Science Press, 2018: 1
|
|
胡正飞. 马氏体耐热钢的应用研究与评价 [M]. 北京: 科学出版社, 2018: 1
|
8 |
Liu Z D. Design and Application of Selective Reinforcement of Heat-Resistant Materials in Power Plants [M]. Beijing: Metallurgical Industry Press, 2017: 1
|
|
刘正东. 电站耐热材料的选择性强化设计与实践 [M]. 北京: 冶金工业出版社, 2017: 1
|
9 |
Abe F. Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels [J]. Mater. Sci. Eng., 2004, A387-389: 565
|
10 |
Gao Z L, Song Y X, Pan Z X, et al. Nanoindentation investigation on the creep behavior of P92 steel weld joint after creep-fatigue loading [J]. Int. J. Fatigue, 2020, 134: 105506
|
11 |
Zhang J W, Yu L M, Gao Q Z, et al. A new strategy to improve the creep strength of a novel G115 steel by accelerating the precipitation of nano-sized MX and Cu-rich particles [J]. Scr. Mater., 2022, 220: 114903
|
12 |
Pandey C, Giri A, Mahapatra M M. Effect of normalizing temperature on microstructural stability and mechanical properties of creep strength enhanced ferritic P91 steel [J]. Mater. Sci. Eng., 2016, A657: 173
|
13 |
Xu L Q, Zhang D T, Liu Y C, et al. Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel [J]. Int. J. Miner. Metall. Mater., 2014, 21: 438
|
14 |
Xiao B, Xu L Y, Zhao L, et al. Microstructure evolution and fracture mechanism of a novel 9Cr tempered martensite ferritic steel during short-term creep [J]. Mater. Sci. Eng., 2017, A707: 466
|
15 |
Liang Y, Yan W, Shi X B, et al. On Laves phase in a 9Cr3W3CoB martensitic heat resistant steel when aged at high temperatures [J]. J. Mater. Sci. Technol., 2021, 85: 129
doi: 10.1016/j.jmst.2020.12.062
|
16 |
Sakthivel T, Sasikala G, Rao P S, et al. Creep deformation and rupture behaviour of boron-added P91 Steel [J]. Mater. Sci. Technol., 2021, 37: 478
|
17 |
Yoshizawa M, Igarashi M, Moriguchi K, et al. Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants [J]. Mater. Sci. Eng., 2009, A510-511: 162
|
18 |
Jiang C C, Dong Z, Song X L, et al. Long-term creep rupture strength prediction for a new grade of 9Cr martensitic creep resistant steel (G115)—An application of a new tensile creep rupture model [J]. J. Mater. Res. Technol, 2020, 9: 5542
|
19 |
Kipelova A, Odnobokova M, Belyakov A, et al. Effect of Co on creep behavior of a P911 steel [J]. Metall. Mater. Trans., 2013, 44A: 577
|
20 |
Taneike M, Sawada K, Abe F. Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment [J]. Metall. Mater. Trans., 2004, 35A: 1255
|
21 |
Xu Y T, Li W, Wang M J, et al. Nano-sized MX carbonitrides contribute to the stability of mechanical properties of martensite ferritic steel in the later stages of long-term aging [J]. Acta Mater., 2019, 175: 148
|
22 |
Hoffmann J, Rieth M, Klimenkov M, et al. Improvement of EUROFER's mechanical properties by optimized chemical compositions and thermo-mechanical treatments [J]. Nucl. Mater. Energy, 2018, 16: 88
|
23 |
Klueh R L, Hashimoto N, Maziasz P J. New nano-particle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment [J]. J. Nucl. Mater., 2007, 367-370: 48
|
24 |
Prakash P, Vanaja J, Reddy G V P, et al. On the effect of thermo-mechanical treatment on creep deformation and rupture behaviour of a reduced activation ferritic-martensitic steel [J]. J. Nucl. Mater., 2019, 520: 65
doi: 10.1016/j.jnucmat.2019.04.014
|
25 |
Dak G, Pandey C. A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application [J]. J. Manuf. Process., 2020, 58: 377
|
26 |
Cheng C D, Chen P Y, Tu C S, et al. Phase transformation and mechanism on enhanced creep-life in P9 Cr-Mo heat-resistant steel [J]. J. Mater. Res. Technol., 2020, 9: 4617
|
27 |
Pandey C, Mahapatra M M, Kumar P, et al. Softening mechanism of P91 steel weldments using heat treatments [J]. Arch. Civ. Mech. Eng., 2019, 19: 297
doi: 10.1016/j.acme.2018.10.005
|
28 |
Peng Z F, Liu S, Yang C, et al. The effect of phase parameter variation on hardness of P91 components after service exposures at 530-550oC [J]. Acta Mater., 2018, 143: 141
|
29 |
Hajra R N, Rai A K, Tripathy H P, et al. Influence of tungsten on transformation characteristics in P92 ferritic-martensitic steel [J]. J. Alloys Compd., 2016, 689: 829
|
30 |
Pandey C, Mahapatra M M, Kumar P, et al. Study on effect of double austenitization treatment on fracture morphology tensile tested nuclear grade P92 steel [J]. Eng. Fail. Anal., 2019, 96: 158
|
31 |
Abstoss K G, Schmigalla S, Schultze S, et al. Microstructural changes during creep and aging of a heat resistant MARBN steel and their effect on the electrochemical behaviour [J]. Mater. Sci. Eng., 2019, A743: 233
|
32 |
Li S Z, Eliniyaz Z, Zhang L T, et al. Microstructural evolution of delta ferrite in SAVE12 steel under heat treatment and short-term creep [J]. Mater. Charact., 2012, 73: 144
|
33 |
Tang Z X, Jing H Y, Xu L Y, et al. Crack growth behavior, fracture mechanism, and microstructural evolution of G115 steel under creep-fatigue loading conditions [J]. Int. J. Mech. Sci., 2019, 161-162: 105037
|
34 |
Liu Z D, Chen Z Z, Bao H S, et al. Development and Engineering of a New Generation of Martensitic Heat Resistant Steel G115 [M]. Beijing: Metallurgical Industry Press, 2020: 263
|
|
刘正东, 陈正宗, 包汉生 等. 新一代马氏体耐热钢G115研发及工程化 [M]. 北京: 冶金工业出版社, 2020: 263
|
35 |
He H S, Yu L M, Liu C X, et al. Research progress of a novel martensitic heat-resistant steel G115 [J]. Acta Metall. Sin., 2022, 58: 311
doi: 10.11900/0412.1961.2021.00185
|
|
何焕生, 余黎明, 刘晨曦 等. 新一代马氏体耐热钢G115的研究进展 [J]. 金属学报, 2022, 58: 311
doi: 10.11900/0412.1961.2021.00185
|
36 |
Yan P, Liu Z D, Bao H S, et al. Effect of tempering temperature on the toughness of 9Cr-3W-3Co martensitic heat resistant steel [J]. Mater. Des., 2014, 54: 874
|
37 |
Yan P, Liu Z D, Bao H S, et al. Effect of normalizing temperature on the strength of 9Cr-3W-3Co martensitic heat resistant steel [J]. Mater. Sci. Eng., 2014, A597: 148
|
38 |
Xu Z Y. Some aspects of progress and perspective in martensitic transformation [J]. Acta Metall. Sin., 1991, 27: 1
|
|
徐祖耀. 马氏体相变研究的进展和瞻望 [J]. 金属学报, 1991, 27: 1
|
39 |
Li C H, Li X Y, Yu W C, et al. Effect of cooling rate on martensitic transformation initiation temperature and hardness of super high strength martensitic steel [J]. Heat Treat. Met., 2022, 47: 183
|
|
李春辉, 李晓源, 尉文超 等. 冷却速度对超高强马氏体钢的马氏体相变起始温度和硬度的影响 [J]. 金属热处理, 2022, 47: 183
doi: 10.13251/j.issn.0254-6051.2022.07.032
|
40 |
Du P J, Wu D. Effect of prior austenite grain size on martensitic transformation in medium manganese steel [J]. Heat Treat. Met., 2021, 46(9): 21
doi: 10.13251/j.issn.0254-6051.2021.09.004
|
|
杜鹏举, 吴 迪. 中锰钢中原奥氏体晶粒尺寸对马氏体相变的影响 [J]. 金属热处理, 2021, 46(9): 21
doi: 10.13251/j.issn.0254-6051.2021.09.004
|
41 |
Zhao X L, Luo X Y. Martensitic transformation kinetics of T92 ferrite heat-resistant steel [J]. Heat Treat. Met., 2019, 44(9): 84
|
|
赵小龙, 罗晓阳. T92铁素体耐热钢马氏体的相变动力学 [J]. 金属热处理, 2019, 44(9): 84
|
42 |
Zhao N Q, Yang Z G, Feng Y L, et al. Solid Phase Transformations in Alloys [M]. Changsha: Central South University Press, 2008: 180
|
|
赵乃勤, 杨志刚, 冯运莉 等. 合金固态相变 [M]. 长沙: 中南大学出版社, 2008: 180
|
43 |
Gao Q Z, Liu Y C, Di X J, et al. Martensite transformation in the modified high Cr ferritic heat-resistant steel during continuous cooling [J]. J. Mater. Res., 2012, 27: 2779
|
44 |
Liu C X, Liu Y C, Zhang D T, et al. Research on splitting phenomenon of isochronal martensitic transformation in T91 ferritic steel [J]. Phase Transit., 2012, 85: 461
|
45 |
Chen R P, Armaki H G, Maruyama K, et al. Long-term microstructural degradation and creep strength in Gr.91 steel [J]. Mater. Sci. Eng., 2011, A528: 4390
|
46 |
Fedoseeva A, Nikitin I, Dudova N, et al. Effect of creep temperature on Z-phase formation in heat-resistant 9%Cr-3%Co martensitic steel [J]. Mater. Sci. Eng., 2021, A799: 140271
|
47 |
Kipelova A, Kaibyshev R, Belyakov A, et al. Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions [J]. Mater. Sci. Eng., 2011, A528 : 1280
|
48 |
Aghajani A, Somsen C, Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel [J]. Acta Mater., 2009, 57: 5093
|
49 |
Xu Y T, Nie Y H, Wang M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging [J]. Acta Mater., 2017, 131: 110
|
50 |
Wang H, Yan W, van Zwaag S, et al. On the 650oC thermostability of 9-12Cr heat resistant steels containing different precipitates [J]. Acta Mater., 2017, 134: 143
|
51 |
Sawada K, Kushima H, Kimura K. Z-phase formation during creep and aging in 9-12%Cr heat resistant steels [J]. ISIJ Int., 2006, 46: 769
|
52 |
Xiao B, Xu L Y, Cayron C, et al. Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel [J]. Acta Mater., 2020, 195: 199
|
53 |
Zhang J W, Yu L M, Ding R, et al. Deformation behavior, microstructure evolution, and rupture mechanism of the novel G115 steel welded joint during creep [J]. Mater. Charact., 2023, 205: 113275
|
54 |
He H S, Zhang J W, Yu L M, et al. Effects of Cu-rich phases on microstructure evolution and creep deformation behavior of a novel martensitic heat-resistant steel G115 [J]. Mater. Sci. Eng., 2022, A855: 143937
|
55 |
Isik M I, Kostka A, Yardley V A, et al. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12%Cr tempered martensite ferritic steels [J]. Acta Mater., 2015, 90: 94
|
56 |
Xiao X, Liu G Q, Hu B F, et al. Coarsening behavior for M23C6 carbide in 12%Cr-reduced activation ferrite/martensite steel: Experimental study combined with DICTRA simulation [J]. J. Mater. Sci., 2013, 48: 5410
|
57 |
Cui H R, Sun F, Chen K, et al. Precipitation behavior of Laves phase in 10%Cr steel X12CrMoWVNbN10-1-1 during short-term creep exposure [J]. Mater. Sci. Eng., 2010, A527: 7505
|
58 |
Abe F, Ohba T, Miyazaki H, et al. Effect of W-Mo balance and boron nitrides on creep rupture ductility of 9Cr steel [J]. Mater. High Temp., 2019, 36: 368
|
59 |
Sahara R, Matsunaga T, Hongo H, et al. Theoretical investigation of stabilizing mechanism by boron in body-centered cubic iron through (Fe, Cr)23(C, B)6 precipitates [J]. Metall. Mater. Trans., 2016, 47A: 2487
|
60 |
Gustafson Å, Ågren J. Possible effect of Co on coarsening of M23C6 carbide and orowan stress in a 9%Cr steel [J]. ISIJ Int., 2001, 41: 356
|
61 |
Ghosh S. The role of tungsten in the coarsening behaviour of M23C6 carbide in 9Cr-W steels at 600oC [J]. J. Mater. Sci., 2010, 45: 1823
|
62 |
Bhadeshia H K D H. Design of ferritic creep-resistant steels [J]. ISIJ Int., 2001, 41: 626
|
63 |
Xu Y T, Wang M J, Wang Y, et al. Study on the nucleation and growth of Laves phase in a 10%Cr martensite ferritic steel after long-term aging [J]. J. Alloys Compd., 2015, 621: 93
|
64 |
Hosoi Y, Wade N, Kunimitsu S, et al. Precipitation behavior of Laves phase and its effect on toughness of 9Cr-2Mo ferritic-martensitic steel [J]. J. Nucl. Mater., 1986, 141-143: 461
|
65 |
Mao C L, Liu C X, Yu L M, et al. Developing of containing Ta, Zr reduced activation ferritic/martensitic (RAFM) steel with excellent creep property [J]. Mater. Sci. Eng., 2022, A851: 143625
|
66 |
Yu G, Nita N, Baluc N. Thermal creep behaviour of the EUROFER 97 RAFM steel and two European ODS EUROFER 97 steels [J]. Fusion Eng. Des., 2005, 75-79: 1037
|
67 |
Ijiri Y, Oono N, Ukai S, et al. Consideration of the oxide particle-dislocation interaction in 9Cr-ODS steel [J]. Philos. Mag., 2017, 97: 1047
|
68 |
Ohtsuka S, Ukai S, Sakasegawa H, et al. Nano-mesoscopic structural characterization of 9Cr-ODS martensitic steel for improving creep strength [J]. J. Nucl. Mater., 2007, 367-370: 160
|
69 |
Zhao Q, Yu L M, Liu Y C, et al. Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing [J]. Int. J. Miner. Metall. Mater., 2018, 25: 1156
|
70 |
Zhou X S, Ma Z Q, Yu L M, et al. Influence of Al addition upon the microstructure and mechanical property of dual-phase 9Cr-ODS steels [J]. Met. Mater. Int., 2019, 25: 168
|
71 |
Ha V T, Jung W S. Effects of heat treatment processes on microstructure and creep properties of a high nitrogen 15Cr-15Ni austenitic heat resistant stainless steel [J]. Mater. Sci. Eng., 2011, A528: 7115
|
72 |
Hollner S, Fournier B, Le Pendu J, et al. High-temperature mechanical properties improvement on modified 9Cr-1Mo martensitic steel through thermomechanical treatments [J]. J. Nucl. Mater., 2010, 405: 101
|
73 |
Dorantes-Rosales H J, López-Hirata V M, Saucedo-Muñoz M L, et al. Effect of prior cold working on microstructural evolution of precipitation in Zn-22Al-2Cu alloy during aging [J]. Mater. Sci. Technol., 2006, 22: 1219
|
74 |
Abe F. Effect of quenching, tempering, and cold rolling on creep deformation behavior of a tempered martensitic 9Cr-1W steel [J]. Metall. Mater. Trans., 2003, 34A: 913
|
75 |
Zhang J W, Yu L M, Gao Q Z, et al. Creep behavior, microstructure evolution and fracture mechanism of a novel martensite heat resistance steel G115 affected by prior cold deformation [J]. Mater. Sci. Eng., 2022, A850: 143564
|
76 |
Yadav H K, Ballal A R, Thawre M M, et al. Recovery and recrystallisation during creep exposure of cold worked Ti-modified 14Cr-15Ni austenitic stainless steel [J]. Mater. High Temp., 2020, 37: 221
|
77 |
Vijayanand V D, Nandagopal M, Parameswaran P, et al. Effect of prior cold work on creep rupture and tensile properties of 14Cr-15Ni-Ti stainless steel [J]. Procedia Eng., 2013, 55: 78
|
78 |
Vijayanand V D, Parameswaran P, Nandagopal M, et al. Effect of prior cold work on creep properties of a titanium modified austenitic stainless steel [J]. J. Nucl. Mater., 2013, 438: 51
|
79 |
Lu H H, Guo H K, Zhang W G, et al. Effects of prior deformation on precipitation behavior and mechanical properties of super-ferritic stainless steel [J]. J. Mater. Process. Technol., 2020, 281: 116645
|
80 |
Manojkumar R, Mahadevan S, Mukhopadhyay C K, et al. Study on the influence of prior cold work on precipitation behavior of 304HCu stainless steel during isothermal aging [J]. Metall. Mater. Trans., 2019, 50A: 5476
|
81 |
Zhang J W, Yu L M, Gao Q Z, et al. Tailoring the tempered microstructure of a novel martensitic heat resistant steel G115 through prior cold deformation and its effect on mechanical properties [J]. Mater. Sci. Eng., 2022, A841: 143015
|
82 |
Vivas J, Celada-Casero C, Martín D S, et al. Nano-precipitation strengthened G91 by thermo-mechanical treatment optimization [J]. Metall. Mater. Trans., 2016, 47A: 5344
|
83 |
Vivas J, Capdevila C, Jimenez J A, et al. Effect of ausforming temperature on the microstructure of G91 steel [J]. Metals, 2017, 7: 236
|
84 |
Prakash, Vanaja J, Laha K, et al. Influence of thermo-mechanical treatment in ferritic phase field on microstructure and mechanical properties of reduced activation ferritic-martensitic steel [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 338: 012027
|
85 |
Vivas J, Capdevila C, Altstadt E, et al. Importance of austenitization temperature and ausforming on creep strength in 9Cr ferritic/martensitic steel [J]. Scr. Mater., 2018, 153: 14
|
86 |
Vivas J, Capdevila C, Altstadt E, et al. Effect of ausforming temperature on creep strength of G91 investigated by means of small punch creep tests [J]. Mater. Sci. Eng., 2018, A728: 259
|
87 |
Sakthivel T, Shruti P, Parameswaran P, et al. Enhancement in creep strength of modified 9Cr-1Mo steel through thermo-mechanical treatment [J]. Trans. Indian Inst. Met., 2017, 70: 1177
|
88 |
Chen L Q, Zeng Z Y, Zhao Y, et al. Microstructures and high-temperature mechanical properties of a martensitic heat-resistant stainless steel 403Nb processed by thermo-mechanical treatment [J]. Metall. Mater. Trans., 2014, 45A: 1498
|
89 |
Sunil S, Kapoor R, Sarkar S K, et al. Ultra-high strength steel made from AISI 304L using a novel thermo-mechanical processing technique [J]. Acta Mater., 2021, 221: 117379
|
90 |
Kumar S, Kumar S, Pandey C, et al. Effect of post-weld heat treatment and dissimilar filler metal composition on the microstructural developments, and mechanical properties of gas tungsten arc welded joint of P91 steel [J]. Int. J. Press. Vessels Pip., 2021, 191: 104373
|
91 |
Maduraimuthu V, Vasantharaja P, Vasudevan M, et al. Microstructure and mechanical properties of 9Cr-0.5Mo-1.8W-VNb (P92) steel weld joints processed by fusion welding [J]. Mater. Sci. Eng., 2021, A813: 141186
|
92 |
Pandey C, Mahapatra M M, Kumar P, et al. Comparative study of autogenous tungsten inert gas welding and tungsten arc welding with filler wire for dissimilar P91 and P92 steel weld joint [J]. Mater. Sci. Eng., 2018, A712: 720
|
93 |
Pandey C, Mahapatra M M, Kumar P, et al. Effect of post weld heat treatments on microstructure evolution and type IV cracking behavior of the P91 steel welds joint [J]. J. Mater. Process. Technol., 2019, 266: 140
|
94 |
Zhang J W, Yu L M, Gao Q Z, et al. Development of weld filler material to match the advanced martensitic heat resistance steel G115 and tailoring the performance by tempering temperature [J]. J. Mater. Res. Technol., 2022, 21: 2515
|
95 |
Fu J, van Slingerland J, Brouwer H, et al. Applicability study of pulsed laser beam welding on ferritic-martensitic ODS Eurofer steel [J]. Metals, 2020, 10: 736
|
96 |
Hao K D, Zhang C, Zeng X Y, et al. Effect of heat input on weld microstructure and toughness of laser-arc hybrid welding of martensitic stainless steel [J]. J. Mater. Process. Technol., 2017, 245: 7
|
97 |
Zhang Y Y, Gou G Q. Microstructure and properties of Co3W2 heat-resistant steel by vacuum electron beam welding [J]. Int. J. Mod. Phys., 2020, 34B: 2040058
|
98 |
Xu L Y, Pang H N, Zhao L, et al. Microstructure and mechanical properties of CMT + Pwelding process on G115 steel [J]. Trans. China Weld. Inst., 2020, 41(8): 1
|
|
徐连勇, 庞红宁, 赵 雷 等. G115钢CMT + P焊接工艺及组织和性能 [J]. 焊接学报, 2020, 41(8): 1
doi: 10.12073/j.hjxb.20200208002
|
99 |
Chen M L, Jiang B, Ding R, et al. Microstructure evolution and tensile behaviors of dissimilar TLP joint of austenitic steel and high-Cr ferritic steel [J]. Mater. Sci. Eng., 2023, A870: 144818
|
100 |
Gao Y, Wang Z M, Liu Y C, et al. Diffusion bonding of 9Cr martensitic/ferritic heat-resistant steels with an electrodeposited Ni interlayer [J]. Metals, 2018, 8: 1012
|
101 |
Hua Y, Chen J G, Yu L M, et al. Microstructure evolution and mechanical properties of dissimilar material diffusion-bonded joint for high Cr ferrite heat-resistant steel and austenitic heat-resistant steel [J]. Acta Metall. Sin., 2022, 58: 141
doi: 10.11900/0412.1961.2020.00446
|
|
化 雨, 陈建国, 余黎明 等. 高Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能 [J]. 金属学报, 2022, 58: 141
|
102 |
Han W T, Chen D S, Ha Y, et al. Modifications of grain-boundary structure by friction stir welding in the joint of nano-structured oxide dispersion strengthened ferritic steel and reduced activation martensitic steel [J]. Scr. Mater., 2015, 105: 2
|
103 |
Hua P, Moronov S, Nie C Z, et al. Microstructure and properties in friction stir weld of 12Cr steel [J]. Sci. Technol. Weld. Join., 2014, 19: 76
|
104 |
Noh S, Kasada R, Kimura A. Solid-state diffusion bonding of high-Cr ODS ferritic steel [J]. Acta Mater., 2011, 59: 3196
|
105 |
Zhou X S, Dong Y T, Liu C X, et al. Transient liquid phase bonding of CLAM/CLAM steels with Ni-based amorphous foil as the interlayer [J]. Mater. Des., 2015, 88: 1321
|
106 |
Li W C, Li X H, Liu Y C, et al. Homogenization stage during TLP bonding of RAFM steel with a Fe-Si-B interlayer: Microstructure evolution and mechanical properties [J]. Mater. Sci. Eng., 2020, A780: 139205
|
107 |
Zhang C, Cui L, Liu Y C, et al. Microstructures and mechanical properties of friction stir welds on 9%Cr reduced activation ferritic/martensitic steel [J]. J. Mater. Sci. Technol., 2018, 34: 756
doi: 10.1016/j.jmst.2017.11.049
|
108 |
Parker J. Factors affecting type IV creep damage in grade 91 steel welds [J]. Mater. Sci. Eng., 2013, A578: 430
|
109 |
Xue W, Pan Q G, Ren Y Y, et al. Microstructure and type IV cracking behavior of HAZ in P92 steel weldment [J]. Mater. Sci. Eng., 2012, A552: 493
|
110 |
Zhang Q B, Zhang J X, Zhao P F, et al. Microstructure of 10%Cr martensitic heat-resistant steel welded joints and type IV cracking behavior during creep rupture at 650oC [J]. Mater. Sci. Eng., 2015, A638: 30
|
111 |
Wang Y Y, Kannan R, Li L J. Correlation between intercritical heat-affected zone and type IV creep damage zone in grade 91 steel [J]. Metall. Mater. Trans., 2018, 49A: 1264
|
112 |
Liu Y, Tsukamoto S, Shirane T, et al. Formation mechanism of type IV failure in high Cr ferritic heat-resistant steel-welded joint [J]. Metall. Mater. Trans., 2013, 44A: 4626
|
113 |
Pandey C, Mahapatra M M, Kumar P. Effect of post weld heat treatments on fracture frontier and type IV cracking nature of the crept P91 welded sample [J]. Mater. Sci. Eng., 2018, A731: 249
|
114 |
Khajuria A, Akhtar M, Bedi R, et al. Microstructural investigations on simulated intercritical heat-affected zone of boron modified P91-steel [J]. Mater. Sci. Technol., 2020, 36: 1407
|
115 |
Matsunaga T, Hongo H, Tabuchi M, et al. Suppression of grain refinement in heat-affected zone of 9Cr-3W-3Co-VNb steels [J]. Mater. Sci. Eng., 2016, A655: 168
|
116 |
Yu X, Babu S S, Terasaki H, et al. Correlation of precipitate stability to increased creep resistance of Cr-Mo steel welds [J]. Acta Mater., 2013, 61: 2194
|
117 |
Sakthivel T, Nandeswarudu S M, Shruti P, et al. An improvement in creep strength of thermo-mechanical treated modified 9Cr-1Mo steel weld joint [J]. Mater. High Temp., 2019, 36: 76
doi: 10.1080/09603409.2018.1460542
|
118 |
Shassere B A, Yamamoto Y, Babu S S. Toward improving the type IV cracking resistance in Cr-Mo steel weld through thermo-mechanical processing [J]. Metall. Mater. Trans., 2016, 47A: 2188
|
119 |
Zhang J W, Yu L M, Liu Y C, et al. Improving creep strength of the fine grain heat-affected zone of a novel 9Cr martensitic heat-resistant steel via modified thermo-mechanical treatment [J]. Int. J. Miner. Metall. Mater., 2023, doi: 10.1007/s12613-023-2760-0
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|