Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (6): 713-730    DOI: 10.11900/0412.1961.2023.00488
Overview Current Issue | Archive | Adv Search |
Synergistic Strengthening of High-Cr Martensitic Heat-Resistant Steel and Application of Thermo-Mechanical Treatments
ZHANG Jingwen, YU Liming, LIU Chenxi, DING Ran, LIU Yongchang()
State Key Laboratory of Hydraulic Engineering Simulation and Safety, School of Materials Science and Engineering, Tianjin University, Tianjin 300354, China
Cite this article: 

ZHANG Jingwen, YU Liming, LIU Chenxi, DING Ran, LIU Yongchang. Synergistic Strengthening of High-Cr Martensitic Heat-Resistant Steel and Application of Thermo-Mechanical Treatments. Acta Metall Sin, 2024, 60(6): 713-730.

Download:  HTML  PDF(5491KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

By virtue of their high thermal conductivity, low thermal expansion coefficient, and excellent high-temperature creep strength, high-Cr (mass fraction: 9%-12%) martensitic heat-resistant steels are the putative main constituents of the key equipment in ultra-supercritical (USC) power plants. However, the harsh environment caused by enhancing the steam parameters has recently challenged the high-temperature properties and the continually deteriorating creep strength during service has seriously threatened the safety and reliability of these steels. Previously, the creep strength of high-Cr martensitic heat-resistant steels was enhanced by optimizing the alloying compositions to promote the dispersed precipitation of strengthening phases, but the enhancement effect of reinforced single-precipitate strengthening is limited. In recent years, synergistic strengthening reinforcement of dislocation-precipitate-interface has emerged as a promising solution because the introduced dislocations promote various precipitations and the phase transformation can be controlled to tailor the lath structure, thus reinforcing the dislocation-precipitate-interface interactions and synergistically enhancing various strengthening effects. This paper overviews the synergistic strengthening of dislocation-precipitate-interface and microstructure control in high-Cr martensitic heat-resistant steels subjected to thermo-mechanical treatments. The review covers alloying optimization to improve the creep strength, the phase transformations during heating treatments, and the mechanism of microstructural degradation at high temperatures. It also compares the effects of single-precipitate and synergistic strengthening processes on creep strength and introduces microstructure control in welded joints by thermo-mechanical treatments in terms of creep failure behaviors. This research aims to guide the design and engineering applications of high-Cr martensitic heat-resistant steels and other precipitate-strengthening heat-resistant steels for USC power plants.

Key words:  high-Cr martensitic heat-resistant steel      high-temperature creep strength      synergistic strengthening      thermo-mechanical treatment      microstructure control     
Received:  15 December 2023     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(52034004);National Key Research and Development Project of China(2022YFB3705300)
Corresponding Authors:  LIU Yongchang, professor, Tel: (022)85356410, E-mail: ycliu@tju.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2023.00488     OR     https://www.ams.org.cn/EN/Y2024/V60/I6/713

Fig.1  Microstructure characteristics and synergistic strengthening of the high-Cr martensitic heat-resistant steels
(a) schematic diagram[11] (PAGs—prior austenite grains)
(b) synergistic strengthening of lath interfaces, dislocations, and precipitates
Fig.2  Industrial normalizing and tempering treatments of high-Cr martensitic heat-resistant steels (Ac1—starting temperature of austenite phase transformation, Ac3—ending temperature of austenite phase transformation) (a), and effects of cooling rate on lath structure[44] (b, c)
Fig.3  Swallowing behaviors of Laves phases on M23C6 during aging (Insets show the corresponding selected area electron diffraction patterns)[49] (a, b) and the coarsening and dissolution behaviors of Cu-rich phases during creep (CRPs—Cu-rich precipitates)[52] (c, d) in high-Cr martensitic heat-resistant steels
Fig.4  Recovery behaviors of dislocations (a, b) and laths (c, d) during creep in high-Cr martensitic heat-resistant steels (a, c) transient stages (b, d) accelerated stages
Fig.5  Schematic showing the deformation and heating treatments of synergistic strengthening of dislocation-precipitate-interface (a), and effects of cold rolling on lath structure (b, c)
Fig.6  Interactions between Cu-rich particles and dislocations in the G115 steel for initial state (a) and 20% cold rolling (c); and dislocation cells for initial state (b) and coarse precipitates after creep rupture (d) in the G115 steel with 45% cold rolling[75] (NT—normalizing and tempering, CR—cold rolling)
Fig.7  Schematics showing the deformation and heating treatments of synergistic strengthening of dislocation-tempered precipitate-interface
(a) cold rolling (b) hot rolling
Fig.8  Interactions between precipitates and dislocations of initial state and 20% cold-rolled G115 steel after tempering for different time (a-d) and creep strain versus time curves obtained at 650oC under 160 MPa (e)[11]
(a, b) MX particles (c, d) Cu-rich particles
Fig.9  MX particles of initial and TMT-9Cr martensitic heat-resistant steels[85] (a, b), and lath structures of initial and TMT-403Nb martensitic heat-resistant steels[88] (c, d) (TMT—thermal-mechanical treatment)
Fig.10  Fine-grain structure[94] (a) and creep cracks[53] (b, c) in fine-grain heat affected zone (FGHAZ), heterogeneous grains (marked by letters A-G) with different hardnesses and creep cracks[111] (d-f) in inter-critical heat affected zone (ICHAZ) of high-Cr martensitic heat-resistant steels (Inset in Fig.10c shows the corresponding EDS map of element Cr)
Fig.11  Element accumulation (a), uneven distribution of M23C6 (b), and creep cracks (c) in FGHAZ in high-Cr martensitic heat-resistant steels[112]
Fig.12  Schematics showing the deformation and heating treatment for microstructure control of high-Cr martensitic heat-resistant steel weld joints
(a) deformation and heating treatments before welding
(b) heating history during welding and post weld heating treatment
Fig.13  Distributions of elements (a, b, d, e) and precipitation of strengthening particles (c, f) in the Gleeble simulated FGHAZ of initial and deformation-heated G115 steel[119]
1 Liu Z D. Challenges to the critical steel technology in the course of the development of Chinese energy industries [J]. Spec. Steel Technol., 2010, 16(1): 1
刘正东. 中国能源工业发展对钢铁材料技术的挑战 [J]. 特钢技术, 2010, 16(1): 1
2 Liu Z D, Cheng S C, Tang G B, et al. The state-of-the-art of steel technology used for Chinese power plants and its future [J]. Iron Steel, 2011, 46(3): 1
刘正东, 程世长, 唐广波 等. 中国电站用钢技术现状和未来发展 [J]. 钢铁, 2011, 46(3): 1
3 Liu Z D, Chen Z Z, He X K, et al. Systematical innovation of heat resistant materials used for 630~700oC advanced ultra-supercritical (A-USC) fossil fired boilers [J]. Acta Metall. Sin., 2020, 56: 539
刘正东, 陈正宗, 何西扣 等. 630~700℃超超临界燃煤电站耐热管及其制造技术进展 [J]. 金属学报, 2020, 56: 539
doi: 10.11900/0412.1961.2019.00419
4 Gan Y. Suggestion to research and development of steel tubes/pipes for ultra super-critical fossil fuel power plants [J]. China Metall., 2006, 16(2): 1
干 勇. 关于研发超(超)临界火电机组高级锅炉管的建议 [J]. 中国冶金, 2006, 16(2): 1
5 Abe F. Creep rupture ductility of Gr.91 and Gr.92 at 550oC to 700oC [J]. Mater. High Temp., 2020, 37: 243
6 Maruyama K, Dewees D, Abe F, et al. Examinations of equations for creep rupture life with a large creep database on grade 91 steel [J]. Int. J. Press. Vessels Pip., 2022, 199: 104738
7 Hu Z F. Application Research and Evaluation of Martensitic Heat-Resistant Steels [M]. Beijing: Science Press, 2018: 1
胡正飞. 马氏体耐热钢的应用研究与评价 [M]. 北京: 科学出版社, 2018: 1
8 Liu Z D. Design and Application of Selective Reinforcement of Heat-Resistant Materials in Power Plants [M]. Beijing: Metallurgical Industry Press, 2017: 1
刘正东. 电站耐热材料的选择性强化设计与实践 [M]. 北京: 冶金工业出版社, 2017: 1
9 Abe F. Coarsening behavior of lath and its effect on creep rates in tempered martensitic 9Cr-W steels [J]. Mater. Sci. Eng., 2004, A387-389: 565
10 Gao Z L, Song Y X, Pan Z X, et al. Nanoindentation investigation on the creep behavior of P92 steel weld joint after creep-fatigue loading [J]. Int. J. Fatigue, 2020, 134: 105506
11 Zhang J W, Yu L M, Gao Q Z, et al. A new strategy to improve the creep strength of a novel G115 steel by accelerating the precipitation of nano-sized MX and Cu-rich particles [J]. Scr. Mater., 2022, 220: 114903
12 Pandey C, Giri A, Mahapatra M M. Effect of normalizing temperature on microstructural stability and mechanical properties of creep strength enhanced ferritic P91 steel [J]. Mater. Sci. Eng., 2016, A657: 173
13 Xu L Q, Zhang D T, Liu Y C, et al. Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel [J]. Int. J. Miner. Metall. Mater., 2014, 21: 438
14 Xiao B, Xu L Y, Zhao L, et al. Microstructure evolution and fracture mechanism of a novel 9Cr tempered martensite ferritic steel during short-term creep [J]. Mater. Sci. Eng., 2017, A707: 466
15 Liang Y, Yan W, Shi X B, et al. On Laves phase in a 9Cr3W3CoB martensitic heat resistant steel when aged at high temperatures [J]. J. Mater. Sci. Technol., 2021, 85: 129
doi: 10.1016/j.jmst.2020.12.062
16 Sakthivel T, Sasikala G, Rao P S, et al. Creep deformation and rupture behaviour of boron-added P91 Steel [J]. Mater. Sci. Technol., 2021, 37: 478
17 Yoshizawa M, Igarashi M, Moriguchi K, et al. Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants [J]. Mater. Sci. Eng., 2009, A510-511: 162
18 Jiang C C, Dong Z, Song X L, et al. Long-term creep rupture strength prediction for a new grade of 9Cr martensitic creep resistant steel (G115)—An application of a new tensile creep rupture model [J]. J. Mater. Res. Technol, 2020, 9: 5542
19 Kipelova A, Odnobokova M, Belyakov A, et al. Effect of Co on creep behavior of a P911 steel [J]. Metall. Mater. Trans., 2013, 44A: 577
20 Taneike M, Sawada K, Abe F. Effect of carbon concentration on precipitation behavior of M23C6 carbides and MX carbonitrides in martensitic 9Cr steel during heat treatment [J]. Metall. Mater. Trans., 2004, 35A: 1255
21 Xu Y T, Li W, Wang M J, et al. Nano-sized MX carbonitrides contribute to the stability of mechanical properties of martensite ferritic steel in the later stages of long-term aging [J]. Acta Mater., 2019, 175: 148
22 Hoffmann J, Rieth M, Klimenkov M, et al. Improvement of EUROFER's mechanical properties by optimized chemical compositions and thermo-mechanical treatments [J]. Nucl. Mater. Energy, 2018, 16: 88
23 Klueh R L, Hashimoto N, Maziasz P J. New nano-particle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment [J]. J. Nucl. Mater., 2007, 367-370: 48
24 Prakash P, Vanaja J, Reddy G V P, et al. On the effect of thermo-mechanical treatment on creep deformation and rupture behaviour of a reduced activation ferritic-martensitic steel [J]. J. Nucl. Mater., 2019, 520: 65
doi: 10.1016/j.jnucmat.2019.04.014
25 Dak G, Pandey C. A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application [J]. J. Manuf. Process., 2020, 58: 377
26 Cheng C D, Chen P Y, Tu C S, et al. Phase transformation and mechanism on enhanced creep-life in P9 Cr-Mo heat-resistant steel [J]. J. Mater. Res. Technol., 2020, 9: 4617
27 Pandey C, Mahapatra M M, Kumar P, et al. Softening mechanism of P91 steel weldments using heat treatments [J]. Arch. Civ. Mech. Eng., 2019, 19: 297
doi: 10.1016/j.acme.2018.10.005
28 Peng Z F, Liu S, Yang C, et al. The effect of phase parameter variation on hardness of P91 components after service exposures at 530-550oC [J]. Acta Mater., 2018, 143: 141
29 Hajra R N, Rai A K, Tripathy H P, et al. Influence of tungsten on transformation characteristics in P92 ferritic-martensitic steel [J]. J. Alloys Compd., 2016, 689: 829
30 Pandey C, Mahapatra M M, Kumar P, et al. Study on effect of double austenitization treatment on fracture morphology tensile tested nuclear grade P92 steel [J]. Eng. Fail. Anal., 2019, 96: 158
31 Abstoss K G, Schmigalla S, Schultze S, et al. Microstructural changes during creep and aging of a heat resistant MARBN steel and their effect on the electrochemical behaviour [J]. Mater. Sci. Eng., 2019, A743: 233
32 Li S Z, Eliniyaz Z, Zhang L T, et al. Microstructural evolution of delta ferrite in SAVE12 steel under heat treatment and short-term creep [J]. Mater. Charact., 2012, 73: 144
33 Tang Z X, Jing H Y, Xu L Y, et al. Crack growth behavior, fracture mechanism, and microstructural evolution of G115 steel under creep-fatigue loading conditions [J]. Int. J. Mech. Sci., 2019, 161-162: 105037
34 Liu Z D, Chen Z Z, Bao H S, et al. Development and Engineering of a New Generation of Martensitic Heat Resistant Steel G115 [M]. Beijing: Metallurgical Industry Press, 2020: 263
刘正东, 陈正宗, 包汉生 等. 新一代马氏体耐热钢G115研发及工程化 [M]. 北京: 冶金工业出版社, 2020: 263
35 He H S, Yu L M, Liu C X, et al. Research progress of a novel martensitic heat-resistant steel G115 [J]. Acta Metall. Sin., 2022, 58: 311
doi: 10.11900/0412.1961.2021.00185
何焕生, 余黎明, 刘晨曦 等. 新一代马氏体耐热钢G115的研究进展 [J]. 金属学报, 2022, 58: 311
doi: 10.11900/0412.1961.2021.00185
36 Yan P, Liu Z D, Bao H S, et al. Effect of tempering temperature on the toughness of 9Cr-3W-3Co martensitic heat resistant steel [J]. Mater. Des., 2014, 54: 874
37 Yan P, Liu Z D, Bao H S, et al. Effect of normalizing temperature on the strength of 9Cr-3W-3Co martensitic heat resistant steel [J]. Mater. Sci. Eng., 2014, A597: 148
38 Xu Z Y. Some aspects of progress and perspective in martensitic transformation [J]. Acta Metall. Sin., 1991, 27: 1
徐祖耀. 马氏体相变研究的进展和瞻望 [J]. 金属学报, 1991, 27: 1
39 Li C H, Li X Y, Yu W C, et al. Effect of cooling rate on martensitic transformation initiation temperature and hardness of super high strength martensitic steel [J]. Heat Treat. Met., 2022, 47: 183
李春辉, 李晓源, 尉文超 等. 冷却速度对超高强马氏体钢的马氏体相变起始温度和硬度的影响 [J]. 金属热处理, 2022, 47: 183
doi: 10.13251/j.issn.0254-6051.2022.07.032
40 Du P J, Wu D. Effect of prior austenite grain size on martensitic transformation in medium manganese steel [J]. Heat Treat. Met., 2021, 46(9): 21
doi: 10.13251/j.issn.0254-6051.2021.09.004
杜鹏举, 吴 迪. 中锰钢中原奥氏体晶粒尺寸对马氏体相变的影响 [J]. 金属热处理, 2021, 46(9): 21
doi: 10.13251/j.issn.0254-6051.2021.09.004
41 Zhao X L, Luo X Y. Martensitic transformation kinetics of T92 ferrite heat-resistant steel [J]. Heat Treat. Met., 2019, 44(9): 84
赵小龙, 罗晓阳. T92铁素体耐热钢马氏体的相变动力学 [J]. 金属热处理, 2019, 44(9): 84
42 Zhao N Q, Yang Z G, Feng Y L, et al. Solid Phase Transformations in Alloys [M]. Changsha: Central South University Press, 2008: 180
赵乃勤, 杨志刚, 冯运莉 等. 合金固态相变 [M]. 长沙: 中南大学出版社, 2008: 180
43 Gao Q Z, Liu Y C, Di X J, et al. Martensite transformation in the modified high Cr ferritic heat-resistant steel during continuous cooling [J]. J. Mater. Res., 2012, 27: 2779
44 Liu C X, Liu Y C, Zhang D T, et al. Research on splitting phenomenon of isochronal martensitic transformation in T91 ferritic steel [J]. Phase Transit., 2012, 85: 461
45 Chen R P, Armaki H G, Maruyama K, et al. Long-term microstructural degradation and creep strength in Gr.91 steel [J]. Mater. Sci. Eng., 2011, A528: 4390
46 Fedoseeva A, Nikitin I, Dudova N, et al. Effect of creep temperature on Z-phase formation in heat-resistant 9%Cr-3%Co martensitic steel [J]. Mater. Sci. Eng., 2021, A799: 140271
47 Kipelova A, Kaibyshev R, Belyakov A, et al. Microstructure evolution in a 3%Co modified P911 heat resistant steel under tempering and creep conditions [J]. Mater. Sci. Eng., 2011, A528 : 1280
48 Aghajani A, Somsen C, Eggeler G. On the effect of long-term creep on the microstructure of a 12% chromium tempered martensite ferritic steel [J]. Acta Mater., 2009, 57: 5093
49 Xu Y T, Nie Y H, Wang M J, et al. The effect of microstructure evolution on the mechanical properties of martensite ferritic steel during long-term aging [J]. Acta Mater., 2017, 131: 110
50 Wang H, Yan W, van Zwaag S, et al. On the 650oC thermostability of 9-12Cr heat resistant steels containing different precipitates [J]. Acta Mater., 2017, 134: 143
51 Sawada K, Kushima H, Kimura K. Z-phase formation during creep and aging in 9-12%Cr heat resistant steels [J]. ISIJ Int., 2006, 46: 769
52 Xiao B, Xu L Y, Cayron C, et al. Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel [J]. Acta Mater., 2020, 195: 199
53 Zhang J W, Yu L M, Ding R, et al. Deformation behavior, microstructure evolution, and rupture mechanism of the novel G115 steel welded joint during creep [J]. Mater. Charact., 2023, 205: 113275
54 He H S, Zhang J W, Yu L M, et al. Effects of Cu-rich phases on microstructure evolution and creep deformation behavior of a novel martensitic heat-resistant steel G115 [J]. Mater. Sci. Eng., 2022, A855: 143937
55 Isik M I, Kostka A, Yardley V A, et al. The nucleation of Mo-rich Laves phase particles adjacent to M23C6 micrograin boundary carbides in 12%Cr tempered martensite ferritic steels [J]. Acta Mater., 2015, 90: 94
56 Xiao X, Liu G Q, Hu B F, et al. Coarsening behavior for M23C6 carbide in 12%Cr-reduced activation ferrite/martensite steel: Experimental study combined with DICTRA simulation [J]. J. Mater. Sci., 2013, 48: 5410
57 Cui H R, Sun F, Chen K, et al. Precipitation behavior of Laves phase in 10%Cr steel X12CrMoWVNbN10-1-1 during short-term creep exposure [J]. Mater. Sci. Eng., 2010, A527: 7505
58 Abe F, Ohba T, Miyazaki H, et al. Effect of W-Mo balance and boron nitrides on creep rupture ductility of 9Cr steel [J]. Mater. High Temp., 2019, 36: 368
59 Sahara R, Matsunaga T, Hongo H, et al. Theoretical investigation of stabilizing mechanism by boron in body-centered cubic iron through (Fe, Cr)23(C, B)6 precipitates [J]. Metall. Mater. Trans., 2016, 47A: 2487
60 Gustafson Å, Ågren J. Possible effect of Co on coarsening of M23C6 carbide and orowan stress in a 9%Cr steel [J]. ISIJ Int., 2001, 41: 356
61 Ghosh S. The role of tungsten in the coarsening behaviour of M23C6 carbide in 9Cr-W steels at 600oC [J]. J. Mater. Sci., 2010, 45: 1823
62 Bhadeshia H K D H. Design of ferritic creep-resistant steels [J]. ISIJ Int., 2001, 41: 626
63 Xu Y T, Wang M J, Wang Y, et al. Study on the nucleation and growth of Laves phase in a 10%Cr martensite ferritic steel after long-term aging [J]. J. Alloys Compd., 2015, 621: 93
64 Hosoi Y, Wade N, Kunimitsu S, et al. Precipitation behavior of Laves phase and its effect on toughness of 9Cr-2Mo ferritic-martensitic steel [J]. J. Nucl. Mater., 1986, 141-143: 461
65 Mao C L, Liu C X, Yu L M, et al. Developing of containing Ta, Zr reduced activation ferritic/martensitic (RAFM) steel with excellent creep property [J]. Mater. Sci. Eng., 2022, A851: 143625
66 Yu G, Nita N, Baluc N. Thermal creep behaviour of the EUROFER 97 RAFM steel and two European ODS EUROFER 97 steels [J]. Fusion Eng. Des., 2005, 75-79: 1037
67 Ijiri Y, Oono N, Ukai S, et al. Consideration of the oxide particle-dislocation interaction in 9Cr-ODS steel [J]. Philos. Mag., 2017, 97: 1047
68 Ohtsuka S, Ukai S, Sakasegawa H, et al. Nano-mesoscopic structural characterization of 9Cr-ODS martensitic steel for improving creep strength [J]. J. Nucl. Mater., 2007, 367-370: 160
69 Zhao Q, Yu L M, Liu Y C, et al. Effects of aluminum and titanium on the microstructure of ODS steels fabricated by hot pressing [J]. Int. J. Miner. Metall. Mater., 2018, 25: 1156
70 Zhou X S, Ma Z Q, Yu L M, et al. Influence of Al addition upon the microstructure and mechanical property of dual-phase 9Cr-ODS steels [J]. Met. Mater. Int., 2019, 25: 168
71 Ha V T, Jung W S. Effects of heat treatment processes on microstructure and creep properties of a high nitrogen 15Cr-15Ni austenitic heat resistant stainless steel [J]. Mater. Sci. Eng., 2011, A528: 7115
72 Hollner S, Fournier B, Le Pendu J, et al. High-temperature mechanical properties improvement on modified 9Cr-1Mo martensitic steel through thermomechanical treatments [J]. J. Nucl. Mater., 2010, 405: 101
73 Dorantes-Rosales H J, López-Hirata V M, Saucedo-Muñoz M L, et al. Effect of prior cold working on microstructural evolution of precipitation in Zn-22Al-2Cu alloy during aging [J]. Mater. Sci. Technol., 2006, 22: 1219
74 Abe F. Effect of quenching, tempering, and cold rolling on creep deformation behavior of a tempered martensitic 9Cr-1W steel [J]. Metall. Mater. Trans., 2003, 34A: 913
75 Zhang J W, Yu L M, Gao Q Z, et al. Creep behavior, microstructure evolution and fracture mechanism of a novel martensite heat resistance steel G115 affected by prior cold deformation [J]. Mater. Sci. Eng., 2022, A850: 143564
76 Yadav H K, Ballal A R, Thawre M M, et al. Recovery and recrystallisation during creep exposure of cold worked Ti-modified 14Cr-15Ni austenitic stainless steel [J]. Mater. High Temp., 2020, 37: 221
77 Vijayanand V D, Nandagopal M, Parameswaran P, et al. Effect of prior cold work on creep rupture and tensile properties of 14Cr-15Ni-Ti stainless steel [J]. Procedia Eng., 2013, 55: 78
78 Vijayanand V D, Parameswaran P, Nandagopal M, et al. Effect of prior cold work on creep properties of a titanium modified austenitic stainless steel [J]. J. Nucl. Mater., 2013, 438: 51
79 Lu H H, Guo H K, Zhang W G, et al. Effects of prior deformation on precipitation behavior and mechanical properties of super-ferritic stainless steel [J]. J. Mater. Process. Technol., 2020, 281: 116645
80 Manojkumar R, Mahadevan S, Mukhopadhyay C K, et al. Study on the influence of prior cold work on precipitation behavior of 304HCu stainless steel during isothermal aging [J]. Metall. Mater. Trans., 2019, 50A: 5476
81 Zhang J W, Yu L M, Gao Q Z, et al. Tailoring the tempered microstructure of a novel martensitic heat resistant steel G115 through prior cold deformation and its effect on mechanical properties [J]. Mater. Sci. Eng., 2022, A841: 143015
82 Vivas J, Celada-Casero C, Martín D S, et al. Nano-precipitation strengthened G91 by thermo-mechanical treatment optimization [J]. Metall. Mater. Trans., 2016, 47A: 5344
83 Vivas J, Capdevila C, Jimenez J A, et al. Effect of ausforming temperature on the microstructure of G91 steel [J]. Metals, 2017, 7: 236
84 Prakash, Vanaja J, Laha K, et al. Influence of thermo-mechanical treatment in ferritic phase field on microstructure and mechanical properties of reduced activation ferritic-martensitic steel [J]. IOP Conf. Ser.: Mater. Sci. Eng., 2018, 338: 012027
85 Vivas J, Capdevila C, Altstadt E, et al. Importance of austenitization temperature and ausforming on creep strength in 9Cr ferritic/martensitic steel [J]. Scr. Mater., 2018, 153: 14
86 Vivas J, Capdevila C, Altstadt E, et al. Effect of ausforming temperature on creep strength of G91 investigated by means of small punch creep tests [J]. Mater. Sci. Eng., 2018, A728: 259
87 Sakthivel T, Shruti P, Parameswaran P, et al. Enhancement in creep strength of modified 9Cr-1Mo steel through thermo-mechanical treatment [J]. Trans. Indian Inst. Met., 2017, 70: 1177
88 Chen L Q, Zeng Z Y, Zhao Y, et al. Microstructures and high-temperature mechanical properties of a martensitic heat-resistant stainless steel 403Nb processed by thermo-mechanical treatment [J]. Metall. Mater. Trans., 2014, 45A: 1498
89 Sunil S, Kapoor R, Sarkar S K, et al. Ultra-high strength steel made from AISI 304L using a novel thermo-mechanical processing technique [J]. Acta Mater., 2021, 221: 117379
90 Kumar S, Kumar S, Pandey C, et al. Effect of post-weld heat treatment and dissimilar filler metal composition on the microstructural developments, and mechanical properties of gas tungsten arc welded joint of P91 steel [J]. Int. J. Press. Vessels Pip., 2021, 191: 104373
91 Maduraimuthu V, Vasantharaja P, Vasudevan M, et al. Microstructure and mechanical properties of 9Cr-0.5Mo-1.8W-VNb (P92) steel weld joints processed by fusion welding [J]. Mater. Sci. Eng., 2021, A813: 141186
92 Pandey C, Mahapatra M M, Kumar P, et al. Comparative study of autogenous tungsten inert gas welding and tungsten arc welding with filler wire for dissimilar P91 and P92 steel weld joint [J]. Mater. Sci. Eng., 2018, A712: 720
93 Pandey C, Mahapatra M M, Kumar P, et al. Effect of post weld heat treatments on microstructure evolution and type IV cracking behavior of the P91 steel welds joint [J]. J. Mater. Process. Technol., 2019, 266: 140
94 Zhang J W, Yu L M, Gao Q Z, et al. Development of weld filler material to match the advanced martensitic heat resistance steel G115 and tailoring the performance by tempering temperature [J]. J. Mater. Res. Technol., 2022, 21: 2515
95 Fu J, van Slingerland J, Brouwer H, et al. Applicability study of pulsed laser beam welding on ferritic-martensitic ODS Eurofer steel [J]. Metals, 2020, 10: 736
96 Hao K D, Zhang C, Zeng X Y, et al. Effect of heat input on weld microstructure and toughness of laser-arc hybrid welding of martensitic stainless steel [J]. J. Mater. Process. Technol., 2017, 245: 7
97 Zhang Y Y, Gou G Q. Microstructure and properties of Co3W2 heat-resistant steel by vacuum electron beam welding [J]. Int. J. Mod. Phys., 2020, 34B: 2040058
98 Xu L Y, Pang H N, Zhao L, et al. Microstructure and mechanical properties of CMT + Pwelding process on G115 steel [J]. Trans. China Weld. Inst., 2020, 41(8): 1
徐连勇, 庞红宁, 赵 雷 等. G115钢CMT + P焊接工艺及组织和性能 [J]. 焊接学报, 2020, 41(8): 1
doi: 10.12073/j.hjxb.20200208002
99 Chen M L, Jiang B, Ding R, et al. Microstructure evolution and tensile behaviors of dissimilar TLP joint of austenitic steel and high-Cr ferritic steel [J]. Mater. Sci. Eng., 2023, A870: 144818
100 Gao Y, Wang Z M, Liu Y C, et al. Diffusion bonding of 9Cr martensitic/ferritic heat-resistant steels with an electrodeposited Ni interlayer [J]. Metals, 2018, 8: 1012
101 Hua Y, Chen J G, Yu L M, et al. Microstructure evolution and mechanical properties of dissimilar material diffusion-bonded joint for high Cr ferrite heat-resistant steel and austenitic heat-resistant steel [J]. Acta Metall. Sin., 2022, 58: 141
doi: 10.11900/0412.1961.2020.00446
化 雨, 陈建国, 余黎明 等. 高Cr铁素体耐热钢与奥氏体耐热钢的异种材料扩散连接接头组织演变及力学性能 [J]. 金属学报, 2022, 58: 141
102 Han W T, Chen D S, Ha Y, et al. Modifications of grain-boundary structure by friction stir welding in the joint of nano-structured oxide dispersion strengthened ferritic steel and reduced activation martensitic steel [J]. Scr. Mater., 2015, 105: 2
103 Hua P, Moronov S, Nie C Z, et al. Microstructure and properties in friction stir weld of 12Cr steel [J]. Sci. Technol. Weld. Join., 2014, 19: 76
104 Noh S, Kasada R, Kimura A. Solid-state diffusion bonding of high-Cr ODS ferritic steel [J]. Acta Mater., 2011, 59: 3196
105 Zhou X S, Dong Y T, Liu C X, et al. Transient liquid phase bonding of CLAM/CLAM steels with Ni-based amorphous foil as the interlayer [J]. Mater. Des., 2015, 88: 1321
106 Li W C, Li X H, Liu Y C, et al. Homogenization stage during TLP bonding of RAFM steel with a Fe-Si-B interlayer: Microstructure evolution and mechanical properties [J]. Mater. Sci. Eng., 2020, A780: 139205
107 Zhang C, Cui L, Liu Y C, et al. Microstructures and mechanical properties of friction stir welds on 9%Cr reduced activation ferritic/martensitic steel [J]. J. Mater. Sci. Technol., 2018, 34: 756
doi: 10.1016/j.jmst.2017.11.049
108 Parker J. Factors affecting type IV creep damage in grade 91 steel welds [J]. Mater. Sci. Eng., 2013, A578: 430
109 Xue W, Pan Q G, Ren Y Y, et al. Microstructure and type IV cracking behavior of HAZ in P92 steel weldment [J]. Mater. Sci. Eng., 2012, A552: 493
110 Zhang Q B, Zhang J X, Zhao P F, et al. Microstructure of 10%Cr martensitic heat-resistant steel welded joints and type IV cracking behavior during creep rupture at 650oC [J]. Mater. Sci. Eng., 2015, A638: 30
111 Wang Y Y, Kannan R, Li L J. Correlation between intercritical heat-affected zone and type IV creep damage zone in grade 91 steel [J]. Metall. Mater. Trans., 2018, 49A: 1264
112 Liu Y, Tsukamoto S, Shirane T, et al. Formation mechanism of type IV failure in high Cr ferritic heat-resistant steel-welded joint [J]. Metall. Mater. Trans., 2013, 44A: 4626
113 Pandey C, Mahapatra M M, Kumar P. Effect of post weld heat treatments on fracture frontier and type IV cracking nature of the crept P91 welded sample [J]. Mater. Sci. Eng., 2018, A731: 249
114 Khajuria A, Akhtar M, Bedi R, et al. Microstructural investigations on simulated intercritical heat-affected zone of boron modified P91-steel [J]. Mater. Sci. Technol., 2020, 36: 1407
115 Matsunaga T, Hongo H, Tabuchi M, et al. Suppression of grain refinement in heat-affected zone of 9Cr-3W-3Co-VNb steels [J]. Mater. Sci. Eng., 2016, A655: 168
116 Yu X, Babu S S, Terasaki H, et al. Correlation of precipitate stability to increased creep resistance of Cr-Mo steel welds [J]. Acta Mater., 2013, 61: 2194
117 Sakthivel T, Nandeswarudu S M, Shruti P, et al. An improvement in creep strength of thermo-mechanical treated modified 9Cr-1Mo steel weld joint [J]. Mater. High Temp., 2019, 36: 76
doi: 10.1080/09603409.2018.1460542
118 Shassere B A, Yamamoto Y, Babu S S. Toward improving the type IV cracking resistance in Cr-Mo steel weld through thermo-mechanical processing [J]. Metall. Mater. Trans., 2016, 47A: 2188
119 Zhang J W, Yu L M, Liu Y C, et al. Improving creep strength of the fine grain heat-affected zone of a novel 9Cr martensitic heat-resistant steel via modified thermo-mechanical treatment [J]. Int. J. Miner. Metall. Mater., 2023, doi: 10.1007/s12613-023-2760-0
[1] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[2] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[3] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[4] Xiancui LIU, Ye PAN, Zhijiao TANG, Weiqiao HE, Tao LU. Microstructure Control and High Temperature Properties of Al-Mn-Based Alloys[J]. 金属学报, 2017, 53(11): 1487-1494.
[5] Jinrong ZUO,Longgang HOU,Jintao SHI,Hua CUI,Linzhong ZHUANG,Jishan ZHANG. PRECIPITATES AND THE EVOLUTION OF GRAIN STRUCTURES DURING DOUBLE-STEP ROLLING OF HIGH-STRENGTH ALUMINUM ALLOYAND RELATED PROPERTIES[J]. 金属学报, 2016, 52(9): 1105-1114.
[6] Yuefeng GU,Chuanyong CUI,Yong YUAN,Zhihong ZHONG. RESEARCH PROGRESS IN A HIGH PERFORMANCE CAST & WROUGHT SUPERALLOY FOR TURBINE DISC APPLICATIONS[J]. 金属学报, 2015, 51(10): 1191-1206.
[7] LI Hai, MAO Qingzhong, WANG Zhixiu, MIAO Fenfen, FANG Bijun, SONG Renguo, ZHENG Ziqiao. EFFECT OF THE THERMO-MECHANICAL TREATMENT OF PRE-AGEING, COLD-ROLLING AND RE-AGEING ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF 6061 Al ALLOY[J]. 金属学报, 2014, 50(10): 1244-1252.
[8] yuyong chen; BaoHui Li. Microstructure and mechanical properties evolution of Ti-45Al-5Nb-0.3Y alloy by thermo-mechanical treatments[J]. 金属学报, 2008, 44(6): 757-763 .
[9] YIN Zhimin;CHEN Xiaoqun;ZHANG Siqi;ZHANG Weibin Central South University of Technology; Changsha. THERMO-MECHANICAL TREATMENT OF 2O91 Al-Li ALLOY[J]. 金属学报, 1991, 27(2): 52-58.
No Suggested Reading articles found!