Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (7): 947-956    DOI: 10.11900/0412.1961.2022.00200
Current Issue | Archive | Adv Search |
High Temperature Oxidation Mode and Transformation Mechanism of Quaternary Co-Ni-Cr-Al Alloys
LV Yunlei1, REN Yanjie1,2(), FENG Kangkang1, ZHOU Mengni1, WANG Wen3, CHEN Jian1, NIU Yan1()
1 College of Energy and Power Engineering, Changsha University of Science and Technology, Changsha 410076, China
2 School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China
3 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

LV Yunlei, REN Yanjie, FENG Kangkang, ZHOU Mengni, WANG Wen, CHEN Jian, NIU Yan. High Temperature Oxidation Mode and Transformation Mechanism of Quaternary Co-Ni-Cr-Al Alloys. Acta Metall Sin, 2024, 60(7): 947-956.

Download:  HTML  PDF(4216KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The addition of Ni to cobalt-based alloys can form the γ′ phase, which can significantly improve their mechanical properties and high-temperature oxidation resistance. The oxidation behavior of quaternary Co-20Ni-8Cr-xAl (x = 3 or 5, mass fraction, %) alloys was investigated in 1.013 × 105 Pa O2 at 800, 900, 1000, and 1100oC. Also, the effects of Al and/or Cr contents and temperature on the oxidation properties of the alloys were explored by analyzing the oxidation kinetics of the alloys and the cross-sectional morphology characteristics of the scales, revealing the oxidation mechanism of these alloys. After oxidation, both the alloys formed complex scales with irregular thickness and composition. Alumina scales were generated for each alloy at 800, 900, and 1000oC and only for Co-20Ni-8Cr-5Al at 1100oC. The increase in temperature from 800oC to 900oC has a negative effect on the oxidation resistance, resulting in greatly accelerated oxidation rates. Conversely, that from 1000oC to 1100oC has a positive effect on the oxidation of the two alloys, causing a decrease in the oxidation rate. The oxidation rate of the Co-Ni-Cr-Al alloy decreases when the Al content in the alloy is increased from 3% to 5%, but 5% is still not sufficient to form continuous alumina scales. The simultaneous presence of Cr and Al is beneficial to reducing the oxidation rate of the quaternary Co-Ni-Cr-Al alloys compared with the ternary Co-Ni-Al alloy with the same Al content.

Key words:  Co-Ni-Cr-Al alloy      high temperature oxidation      oxidation kinetics      protective scale     
Received:  27 April 2022     
ZTFLH:  TB31  
Fund: National Natural Science Foundation of China(52171066);National Natural Science Foundation of China(51771034);Natural Science Foundation of Hunan Province(2020JJ4610);Postgraduate Scientific Research Innovation Project of Hunan Province(CX20200871)
Corresponding Authors:  REN Yanjie, professor, Tel: 13657310308, E-mail: yjren@csust.edu.cn;

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00200     OR     https://www.ams.org.cn/EN/Y2024/V60/I7/947

Nominal (mass fraction / %)Nominal (atomic fraction / %)Actual (mass fraction / %)
Co-20Ni-8Cr-3AlCo-19.27Ni-8.65Cr-6.23AlCo-20.1Ni-7.99Cr-3.02Al
Co-20Ni-8Cr-5AlCo-18.94Ni-8.38Cr-10.26AlCo-20.2Ni-7.92Cr-5.03Al
Table 1  Nominal and actual compositions of Co-20Ni-8Cr-3Al and Co-20Ni-8Cr-5Al alloys
Fig.1  Kinetic curves for the oxidation of the Co-20Ni-8Cr-3Al and Co-20Ni-8Cr-5Al alloys in 1.013 × 105 Pa O2 at 800oC (a, b), 900oC (c, d), 1000oC (e, f), and 1100oC (g, h) for 20 h (t—time; kp, kp1, and kp2—rate constants)
(a, c, e, g) linear plots (b, d, f, h) parabolic plots
Fig.2  Kinetic curves for oxidation of the Co-20Ni-8Cr-3Al (a) and Co-20Ni-8Cr-5Al (b) alloys in 1.013 × 105 Pa O2 at 800, 900, 1000, and 1100oC for 20 h
Fig.3  Cross-sectional morphologies (a, b) and element distributions (c) of Co-20Ni-8Cr-3Al alloy oxidized in 1.013 × 105 Pa O2 at 800oC for 24 h (Fig.3b is the enlarged view of selected area in Fig.3a; IOZ—internal oxidation zone)
Fig.4  Cross-sectional morphologies of Co-20Ni-8Cr-3Al alloy oxidized in 1.013 × 105 Pa O2 at 900oC for 24 h
(a) general view (b) view of a different region
Fig.5  Cross-sectional morphologies of Co-20Ni-8Cr-3Al alloy oxidized in 1.013 × 105 Pa O2 at 1000oC (a1, a2) and 1100oC (b1, b2) for 20 h (Figs.5a2 and b2 are the enlarged views of selected areas in Fig.5a1 and b1, respectively)
Fig.6  Cross-sectional morphologies of Co-20Ni-8Cr-5Al alloy oxidized in 1.013 × 105 Pa O2 at 800oC (a1, a2) and 900oC (b1, b2) for 24 h (Figs.6a2 and b2 are the enlarged views of selected areas in Figs.6a1 and b1, respectively)
Fig.7  Cross-sectional morphologies of Co-20Ni-8Cr-5Al alloy oxidized in 1.013 × 105 Pa O2 at 1000oC (a1, a2) and 1100oC (b1, b2) for 20 h (Figs.7a2 and b2 are the enlarged views of selected areas in Figs.7a1 and b1, respectively)
Fig.8  XRD spectra of Co-20Ni-8Cr-3Al (a) and Co-20Ni-8Cr-5Al (b) alloys oxidized in 1.013 × 105 Pa O2 at 800 and 900oC for 24 h
Fig.9  XRD spectra of Co-20Ni-8Cr-3Al (a) and Co-20Ni-8Cr-5Al (b) alloys oxidized in 1.013 × 105 Pa O2 at 1000 and 1100oC for 20 h
Type of scaleOxidation product
IMO (thick), Al2O3, Cr2O3, spinel
IIMO (thin), Al2O3, Cr2O3, spinel
IIIAl2O3, Cr2O3, spinel
IVAl2O3
Table 2  Oxidation products of four scale types on Co-20Ni-8Cr-3Al and Co-20Ni-8Cr-5Al alloys
Temperature / oCCo-20Ni-8Cr-3AlCo-20Ni-8Cr-5Al
800Type II + type IVType II + type IV
900Type IIType II
1000Type IIType II
1100Type IIType II + type IV
Table 3  Classification of the scales grown on the Co-20Ni-8Cr-3Al and Co-20Ni-8Cr-5Al alloys at 800, 900, 1000, and 1100oC
Fig.10  Comparisons of the kinetic curves for the oxi-dation in 1.013 × 105 Pa O2 at 800oC (a), 900oC (b), and 1000oC (c) for 20 h of the quaternary Co-20Ni-8Cr-xAl alloys with the corresponding data for the ternary Co-20Ni-xAl[31] alloys
1 Young D J. High Temperature Oxidation and Corrosion of Metals [M]. 2nd Ed., Amsterdam: Elsevier, 2016: 1
2 Lai G Y. High-Temperature Corrosion and Materials Applications [M]. ASM International, 2007: 6
3 Yuan F H, Sun X F, Guan H R, et al. Cyclic oxidation behavior of a cobalt-base superalloy [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 115
袁福河, 孙晓峰, 管恒荣 等. 钴基高温合金的循环氧化行为研究 [J]. 中国腐蚀与防护学报, 2002, 22: 115
4 Hou P Y. Impurity effects on alumina scale growth [J]. J. Am. Ceram. Soc., 2003, 86: 660
5 Stott F H, Wood G C, Stringer J. The influence of alloying elements on the development and maintenance of protective scales [J]. Oxid. Met., 1995, 44: 113
6 Wallwork G R, Hed A Z. Mapping of the oxidation products in the ternary Co-Cr-Al system [J]. Oxid. Met., 1971, 3: 213
7 Wallwork G R, Hed A Z. Selection of an alloy composition in the ternary Co-Cr-Al system for oxidation resistance [J]. Oxid. Met., 1971, 3: 243
8 Wood G C, Stott F H. The influence of aluminum additions on the oxidation of Co-Cr alloys at 1000 and 1200oC [J]. Oxid. Met., 1971, 3: 365
9 Irving G N, Stringer J, Whittle D P. The oxidation behavior of Co-Cr-Al alloys at 1000oC [J]. Corrosion, 1977, 33: 56
10 Allam I M, Whittle D P, Stringer J. The oxidation behavior of CoCrAl systems containing active element additions [J]. Oxid. Met., 1978, 12: 35
11 Stott F H, Wood G C, Hobby M G. A comparison of the oxidation behavior of Fe-Cr-Al, Ni-Cr-Al, and Co-Cr-Al alloys [J]. Oxid. Met., 1971, 3: 103
12 Stott F H, Wood G C. The mechanism of oxidation of Ni-Cr-Al alloys at 1000oC-1200oC [J]. Corros. Sci., 1971, 11: 799
13 Giggins C S, Pettit F S. Oxidation of Ni-Cr-Al alloys between 1000℃ and 1200℃ [J]. J. Electrochem. Soc., 1971, 118: 1782
14 Kvernes I A, Kofstad P. The oxidation behavior of some Ni-Cr-Al alloys at high temperatures [J]. Mater. Trans., 1972, 3B: 1511
15 Nijdam T J, Jeurgens L P H, Sloof W G. Effect of partial oxygen pressure on the initial stages of high-temperature oxidation of γ-NiCrAl alloys [J]. Mater. High Temp., 2003, 20: 311
16 Nijdam T J, Jeurgens L P H, Sloof W G. Modelling the thermal oxidation of ternary alloys—Compositional changes in the alloy and the development of oxide phases [J]. Acta Mater., 2003, 51: 5295
17 Nijdam T J, Jeurgens L P H, Sloof W G. Promoting exclusive α-Al2O3 growth upon high-temperature oxidation of NiCrAl alloys: Experiment versus model predictions [J]. Acta Mater., 2005, 53: 1643
18 Nijdam T J, Van Der Pers N M, Sloof W G. Oxide phase development upon high temperature oxidation of γ-NiCrAl alloys [J]. Mater. Corros., 2006, 57: 269
19 Wang E P, Liu H F, Guo W, et al. Effect of pre-oxidation temperature on high-temperature cyclic oxidation resistance of Ni-15Cr-5Al-5Si alloy [J]. Mater. Mech. Eng., 2019, 43(2): 39
doi: 10.11973/jxgccl201902008
王二鹏, 刘海飞, 郭 文 等. 预氧化温度对Ni-15Cr-5Al-5Si合金抗高温循环氧化性能的影响 [J]. 机械工程材料, 2019, 43(2): 39
doi: 10.11973/jxgccl201902008
20 Niu Y, Zhang X J, Wu Y, et al. The third-element effect in the oxidation of Ni-xCr-7Al (x=0, 5, 10, 15 at.%) alloys in 1 atm O2 at 900-1000oC [J]. Corros. Sci., 2006, 48: 4020
21 Zhang X J, Wang S Y, Gesmundo F, et al. The effect of Cr on the oxidation of Ni-10 at% Al in 1 atm O2 at 900-1000oC [J]. Oxid. Met., 2006, 65: 151
22 Wood G C. Fundamental factors determining the mode of scaling of heat-resistant alloys [J]. Werkst. Corros., 1971, 22: 491
23 Weiser M, Galetz M C, Chater R J, et al. Growth mechanisms of oxide scales on two-phase Co/Ni-base model alloys between 800oC and 900oC [J]. J. Electrochem. Soc., 2020, 167: 021504
24 Weiser M, Galetz M C, Zschau H E, et al. Influence of Co to Ni ratio in γ′-strengthened model alloys on oxidation resistance and the efficacy of the halogen effect at 900oC [J]. Corros. Sci., 2019, 156: 84
25 Gao B, Wang L, Liu Y, et al. High temperature oxidation behaviour of γ′-strengthened Co-based superalloys with different Ni addition [J]. Corros. Sci., 2019, 157: 109
doi: 10.1016/j.corsci.2019.05.036
26 Zenk C H, Neumeier S, Engl N M, et al. Intermediate Co/Ni-base model superalloys—Thermophysical properties, creep and oxidation [J]. Scr. Mater., 2016, 112: 83
27 Bastow B D, Whittle D P, Wood G C. Diffusion-controlled growth of solid solution scales on nickel-cobalt alloys [J]. Corros. Sci., 1976, 16: 57
28 Seraffon M, Simms N J, Sumner J, et al. The development of new bond coat compositions for thermal barrier coating systems operating under industrial gas turbine conditions [J]. Surf. Coat. Technol., 2011, 206: 1529
29 Seraffon M, Simms N J, Sumner J, et al. Oxidation behaviour of NiCrAl and NiCoCrAl bond coatings under industrial gas turbine conditions [J]. Oxid. Met., 2014, 81: 203
30 Ren Y J, Dai T, Guo X H, et al. Scaling behavior of four Co-20Ni-xCr-yAl (x = 8, 15 wt.%; y = 3, 5 wt.%) alloys exposed to 1 atm O2 at 1000oC and 1100oC [J]. Corros. Sci., 2021, 191: 109719
31 Ren Y J, Lv Y L, Dai T, et al. Oxidation behavior of ternary alloys Co-20Ni-3Al and Co-20Ni-5Al in 105 Pa O2 atmosphere at 800-1000oC [J]. J. Chin. Soc. Corros. Prot., 2022, 42: 995
任延杰, 吕云蕾, 戴 汀 等. 三元Co-Ni-Al合金在800~1000℃纯氧中的氧化行为研究 [J]. 中国腐蚀与防护学报, 2022, 42: 995
doi: 10.11902/1005.4537.2021.264
[1] XU Wenguo, HAO Wenjiang, LI Yingju, ZHAO Qingbin, LU Bingyu, GUO Heyi, LIU Tianyu, FENG Xiaohui, YANG Yuansheng. Effects of Trace Aluminum and Titanium on High Temper-ature Oxidation Behavior of Inconel 690 Alloy[J]. 金属学报, 2023, 59(12): 1547-1558.
[2] XIE Leipeng, SUN Wenyao, CHEN Minghui, WANG Jinlong, WANG Fuhui. Effects of Processing on Microstructures and Properties of FGH4097 Superalloy[J]. 金属学报, 2022, 58(8): 992-1002.
[3] YANG Liang, LV Haotian, WAN Chunlei, GONG Qianming, CHEN Hao, ZHANG Chi, YANG Zhigang. Review: Mechanism of Reactive Element Effect—Oxide Pegging[J]. 金属学报, 2021, 57(2): 182-190.
[4] Mingyu ZHAO,Huijuan ZHEN,Zhihong DONG,Xiuying YANG,Xiao PENG. Preparation and Performance of a Novel Wear-Resistant and High Temperature Oxidation-Resistant NiCrAlSiC Composite Coating[J]. 金属学报, 2019, 55(7): 902-910.
[5] GAO Bo, WANG Lei, SONG Xiu, LIU Yang, YANG Shuyu, CHIBA Akihiko. Effect of Pre-Oxidation on High Temperature Oxidation and Corrosion Behavior of Co-Al-W-Based Superalloy[J]. 金属学报, 2019, 55(10): 1273-1281.
[6] Yin BAI, Zhengdong LIU, Jianxin XIE, Hansheng BAO, Zhengzong CHEN. Effect of Pre-Oxidation Treatment on the Behavior of High Temperature Oxidation in Steam of G115 Steel[J]. 金属学报, 2018, 54(6): 895-904.
[7] Wenying ZHANG, Jun LI, Bo ZHOU. OXIDATION KINETICS BEHAVIOR AND ELECTRICAL PROPERTY OF MnCO2O4 SPINEL AS A COATING MATERIAL FOR METALLIC INTERCONNECTS[J]. 金属学报, 2016, 52(3): 355-360.
[8] Yuxiang ZENG,Xiping GUO,Yanqiang QIAO,Zhongyi NIE. EFFECT OF Zr ADDITION ON MICROSTRUCTURE AND OXIDATION RESISTANCE OF Nb-Ti-Si BASE ULTRAHIGH-TEMPERATURE ALLOYS[J]. 金属学报, 2015, 51(9): 1049-1058.
[9] Haigen ZHAO,Shusuo LI,Yanling PEI,Shengkai GONG,Huibin XU. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF Ni3Al-BASED SINGLE CRYSTSAL ALLOY IC21[J]. 金属学报, 2015, 51(10): 1279-1287.
[10] ZHOU Xiaowei SHEN Yifu GU Dongdong. MICROSTRUCTURE AND HIGH TEMPERATURE OXIDATION RESISTANCE OF NANOCRYSTALLINE Ni–CeO2 COMPOSITE COATINGS DEPOSITED BY DOUBLE–PULSED ELECTRO DEPOSITION[J]. 金属学报, 2012, 48(8): 957-964.
[11] YU Daqian, LU Xuyang, MA Jun, JIANG Sumeng, LIU Shanchuan, GONG Jun, SUN Chao. STUDY OF OXIDATION BEHAVIOR OF THE GRADIENT NiCrAlY COATING AT 1000 AND 1100 ℃[J]. 金属学报, 2012, 48(6): 759-768.
[12] QIU Jun ZHAO Wenjin Thomas Guilbert Jean-Luc Bechade. HIGH TEMPERATURE OXIDATION BEHAVIOURS OF THREE ZIRCONIUM ALLOYS[J]. 金属学报, 2011, 47(9): 1216-1220.
[13] SONG Peng LU Jiansheng ZHANG Defeng LU Jianguo LI Dejiang. EFFECT OF La AND Hf DOPANT ON THE HIGH TEMPERATURE OXIDATION OF CoNiCrAl ALLOYS[J]. 金属学报, 2011, 47(6): 655-662.
[14] PENG Xin JIANG Sumeng DUAN Xuhai GONG Jun SUN Chao. HIGH TEMPERATURE OXIDATION BEHAVIOR OF A (MCrAlY+AlSiY) COMPOSITE COATING[J]. 金属学报, 2009, 45(3): 378-384.
[15] . [J]. 金属学报, 2007, 43(6): 625-630 .
No Suggested Reading articles found!