Please wait a minute...
Acta Metall Sin  2024, Vol. 60 Issue (7): 869-880    DOI: 10.11900/0412.1961.2022.00163
Current Issue | Archive | Adv Search |
Macrosegregation of Zr and Mo in TC19 Titanium Alloy Ingot
ZHU Shaoxiang1,2, WANG Qingjiang1,2(), LIU Jianrong2, CHEN Zhiyong2
1 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
2 Shi -changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

ZHU Shaoxiang, WANG Qingjiang, LIU Jianrong, CHEN Zhiyong. Macrosegregation of Zr and Mo in TC19 Titanium Alloy Ingot. Acta Metall Sin, 2024, 60(7): 869-880.

Download:  HTML  PDF(2385KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The α + β titanium alloy TC19 (Ti-6Al-2Sn-4Zr-6Mo, mass fraction, %) has shown great application potential in aerospace because of its superior moderate-temperature mechanical properties. The bulk composition of this alloy contains Al, Sn, Zr, and Mo, which are the main alloying elements in the field of high-temperature titanium alloys. Compared with Ti, Al and Sn, which are characterized by lower melting points and densities, can be easily volatilized during vacuum arc remelting (VAR). In addition, Zr has a higher density, and Mo has a higher melting point and density compared with Ti. Therefore, controlling the chemical homogeneity either in the macro- or micro-scale for industrial-scale titanium alloy ingot with complex compositions is challenging. In this study, the macrosegregation behavior and mechanism of Zr and Mo were investigated systematically in a TC19 industrial-scale ingot (ϕ720 mm × 1160 mm) by using a directional solidification technology where samples were solidified under a constant-temperature gradient of approximately 200oC/cm and a wide range of withdrawal rates (solidification rate) from 3 mm/h to 150 mm/h. Result shows an evident macrosegregation of Zr and Mo, which is primarily attributed to the difference in the solidification rate during solidification. Zr as the negative segregation element was pushed to the front of the solid-liquid interface continuously, whereas Mo as the positive segregation element was enriched in the solid phase at the solid-liquid interface. Consequently, the content of Zr is relatively lower at the center equiaxed crystal zone but higher at the top casting riser in the TC19 industrial-scale ingot. However, Mo exhibits the opposite trend in comparison with Zr. The degree of element segregation decreased with the increase of the solidification rate. Moreover, the “crystal rain” caused by the density difference between liquid and solid phases as well as buoyancy would promote the macrosegregation in industrial-scale ingots. The Lorentz force arising from electromagnetic stirring is the main driving force for the flow of the molten pool during VAR. Electromagnetic stirring plays an important role in accelerating the melt flow in the molten pool, and the strong melt flow is favorable to break the correspondence between the grain structure, thereby weakening macrosegregation. Therefore, the low-temperature gradient and low solidification rate, that is, near equilibrium solidification conditions, primarily cause the macrosegregation in TC19 titanium alloy industrial-scale ingots.

Key words:  TC19 titanium alloy      vacuum arc remelting      macrosegregation      directional solidification      electromagnetic stirring     
Received:  08 April 2022     
ZTFLH:  TG146.2  
Fund: National Science and Technology Major Project(J2019-VI-0005-0119)
Corresponding Authors:  WANG Qingjiang, professor, Tel: (024)83978830, E-mail: qjwang@imr.ac.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2022.00163     OR     https://www.ams.org.cn/EN/Y2024/V60/I7/869

Fig.1  Schematics of the ingot cutting (a) and analytical sampling positions (b) (H—hot top)
Fig.2  Parameters of the final vacuum arc remelting (VAR) process (a) and macrostructure (b) of TC19 ingot (2.1 t)
Fig.3  Changes of Al (a), Sn (b), Zr (c), and Mo (d) contents in the longitudinal section of TC19 ingot
Fig.4  Macrostructures of directionally solidified TC19 alloy samples at various withdrawal rates (R) (BZ—base zone, UGZ—uniform growth zone, RSZ—rapid separation zone)
(a) R = 3 mm/h (b) R = 6 mm/h (c) R = 15 mm/h
(d) R = 30 mm/h (e) R = 60 mm/h (f) R = 150 mm/h
Fig.5  Elemental distribution profiles along longitudinal section of directionally solidified TC19 samples at various withdrawal rates
(a) R = 3 mm/h (b) R = 6 mm/h (c) R = 15 mm/h
(d) R = 30 mm/h (e) R = 60 mm/h (f) R = 150 mm/h
AlloyAlSnZrMoVCrFe
Binary phase diagram1.050.920.901.500.900.770.60
Ti-10231.13---0.95-0.38
Ti-171.061.150.771.15-0.74-
Ti-62421.021.080.721.09---
Table 1  Partition coefficients (k) of alloying elements in titanium alloys[19]
Fig.6  Densities of TC19 alloy calculated by JMatPro software at 1630-1730oC
Fig.7  Schematics of formation mechanism of the Zr macrosegregation in solidification process of VAR with electromagnetic stirring
(a) Zr distribution (b) crystal rain
Fig.8  Macrostructure of cross-direction ingot by VAR with electromagnetic stirring
1 Boyer R R. An overview on the use of titanium in the aerospace industry [J]. Mater. Sci. Eng., 1996, A213: 103
2 Williams J C, Boyer R R. Opportunities and issues in the application of titanium alloys for aerospace components [J]. Metals, 2020, 10: 705
3 Bania P J. Next generation titanium alloys for elevated temperature service [J]. ISIJ Int., 1991, 31: 840
4 Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective [J]. J. Aero. Mater., 2014, 34(4): 1
王清江, 刘建荣, 杨 锐. 高温钛合金的现状与前景 [J]. 航空材料学报, 2014, 34(4): 1
doi: 10.11868/j.issn.1005-5053.2014.4.001
5 Mitchell A.. Melting, casting and forging problems in titanium alloys [J]. Mater. Sci. Eng., 1998, A243: 257
6 Wang G Q, Zhao Z B, Yu B B, et al. Effect of heat treatment process on microstructure and mechanical properties of titanium alloy Ti6246 [J]. Chin. J. Mater. Res., 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
王国强, 赵子博, 于冰冰 等. 热处理工艺对Ti6246钛合金组织与力学性能的影响 [J]. 材料研究学报, 2017, 31: 352
doi: 10.11901/1005.3093.2016.621
7 Xu F, Li G P, Yang R, et al. Effect of zirconium content on precipitation of silicide in Ti-1100 alloy [J]. Acta Metall. Sin., 2006, 42: 770
徐 锋, 李阁平, 杨 锐 等. Zr含量对Ti-1100合金中硅化物析出的影响 [J]. 金属学报, 2006, 42: 770
8 Zhao L, Liu J R, Wang Q J, et al. Effect of precipitates on the high temperature creep and creep rupture properties of Ti60 alloy [J]. Chin. J. Mater. Res., 2009, 23: 1
赵 亮, 刘建荣, 王清江 等. 析出相对Ti60钛合金蠕变和持久性能的影响 [J]. 材料研究学报, 2009, 23: 1
9 Qiu J K. Investigation on dwell fatigue behavior of Ti-6Al-2Sn-4Zr-xMo (x = 2-6) alloys [D]. Beijing: University of Chinese Academy of Sciences, 2015
邱建科. Ti-6Al-2Sn-4Zr-xMo (x = 2~6)合金保载疲劳行为研究 [D]. 北京: 中国科学院大学, 2015
10 Li J, Xia M X, Hu Q D, et al. Solutions in improving homogeneities of heavy ingots [J]. Acta Metall. Sin., 2018, 54: 773
doi: 10.11900/0412.1961.2017.00525
李 军, 夏明许, 胡侨丹 等. 大型铸锭均质化问题及其新解 [J]. 金属学报, 2018, 54: 773
11 Li D Z, Chen X Q, Fu P X, et al. Inclusion flotation-driven channel segregation in solidifying steels [J]. Nat. Commun., 2015, 5: 5572
12 Zhang Y, Li X X, Wei K, et al. Element segregation in GH4169 superalloy large-scale ingot and billet manufactured by triple-melting [J]. Acta Metall. Sin., 2020, 56: 1123
doi: 10.11900/0412.1961.2020.00101
张 勇, 李鑫旭, 韦 康 等. 三联熔炼GH4169合金大规格铸锭与棒材元素偏析行为 [J]. 金属学报, 2020, 56: 1123
13 Dobatkin V I, Anoshkin N F. Comparison of macrosegregation in titanium and aluminium alloy ingots [J]. Mater. Sci. Eng., 1999, A263: 224
14 Zagrebelnyy D, Krane M J M. Segregation development in multiple melt vacuum arc remelting [J]. Metall. Mater. Trans., 2009, 40B: 281
15 Yin X C. Study on beta flecks and formation mechanisms in TC17 alloy [D]. Hefei: University of Science and Technology of China, 2020
尹续臣. TC17合金中的β斑及其形成机制研究 [D]. 合肥: 中国科学技术大学, 2020
16 Spittle J A. Columnar to equiaxed grain transition in as solidified alloys [J]. Int. Mater. Rev., 2006, 51: 247
17 Hu Q M, Xu D S, Li D, et al. Electronic structure origins of ordering in binary α-Ti alloys [J]. Acta Metall. Sin., 2002, 38: 562
胡青苗, 徐东生, 李 东 等. 钛合金中的有序化 I: 电子结构根源 [J]. 金属学报, 2002, 38: 562
18 Cui Z Q, Liu B X. Principles of Metallurgy and Heat Treatment [M]. Harbin: Harbin Institute of Technology Press, 1998: 66
崔忠圻, 刘北兴. 金属学与热处理原理 [M]. 哈尔滨: 哈尔滨工业大学出版社, 1998: 66
19 Mitchell A, Kawakami A, Cockcroft S L. Segregation in titanium alloy ingots [J]. High Temp. Mater. Processes, 2007, 26: 59
20 Yin X C, Liu J R, Wang Q J, et al. Investigation of beta fleck formation in Ti-17 alloy by directional solidification method [J]. J. Mater. Sci. Technol., 2020, 48: 36
doi: 10.1016/j.jmst.2019.12.018
21 Yang Z J, Kou H C, Li J S, et al. Macrosegregation behavior of Ti-10V-2Fe-3Al alloy during vacuum consumable arc remelting process [J]. J. Mater. Eng. Perform., 2011, 20: 65
22 Zagrebelnyy D V. Modeling macrosegregation during the vacuum arc remelting of Ti-10V-2Fe-3Al alloy [D]. West Lafayette: Purdue University, 2007
23 Jiang D B, Zhu M Y. Center segregation with final electromagnetic stirring in billet continuous casting process [J]. Metall. Mater. Trans., 2017, 48B: 444
24 Chapelle P, Jardy A, Bellot J P, et al. Effect of electromagnetic stirring on melt pool free surface dynamics during vacuum arc remelting [J]. J. Mater. Sci., 2008, 43: 5734
25 Liu X, Feng G, Zhou Y, et al. Macrosegregation and the underlying mechanism in Ti-6.5Al-1.0Cr-0.5Fe-6.0Mo-3.0Sn-4.0Zr alloy [J]. Prog. Nat. Sci.: Mater. Int., 2019, 29: 224
26 Kurz W, Fisher D J, translated by Li J G, Hu Q D. Fundamentals of Solidification [M]. 4th Ed., Beijing: Higher Education Press, 2010: 14
Kurz W, Fisher D J著, 李建国, 胡侨丹译. 凝固原理 [M]. 第4版. 北京: 高等教育出版社, 2010: 14
27 Mitchell A, Kawakami A, Cockcroft S L. Beta fleck and segregation in titanium alloy ingots [J]. High Temp. Mater. Processes, 2006, 25: 337
28 Mitchell A. Solidification in remelting processes [J]. Mater. Sci. Eng., 2005, A413-414: 10
29 Li J, Wu M H, Ludwig A, et al. Simulation of macrosegregation in a 2.45-ton steel ingot using a three-phase mixed columnar-equiaxed model [J]. Int. J. Heat Mass Transfer, 2014, 72: 668
30 Davidson P A, He X, Lowe A J. Flow transitions in vacuum arc remelting [J]. Mater. Sci. Technol., 2000, 16: 699
31 Fan K, Wu L C, Li J J, et al. Numerical simulation of macrosegregation caused by buoyancy driven flow during VAR process for titanium alloys [J]. Rare Met. Mater. Eng., 2020, 49: 871
樊 凯, 吴林财, 李俊杰 等. 钛合金VAR过程中自然对流下的宏观偏析行为模拟 [J]. 稀有金属材料与工程, 2020, 49: 871
32 Wang B B, Chang H, Li J S, et al. Numerical simulation of electromagnetic stirring during vacuum arc remelting [J]. Rare Met. Mater. Eng., 2009, 38: 1969
王斌斌, 常 辉, 李金山 等. 真空自耗电弧熔炼中电磁搅拌的数值模拟 [J]. 稀有金属材料与工程, 2009, 38: 1969
[1] DONG Shihu, ZHANG Hongwei, LÜ Wenpeng, LEI Hong, WANG Qiang. Numerical Simulation on Macrosegregation in Fe-C Alloy Under Solidification Shrinkage Through Interface Tracking-Dynamic Mesh Technique[J]. 金属学报, 2024, 60(3): 388-404.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[4] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[6] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[7] FENG Miaomiao, ZHANG Hongwei, SHAO Jingxia, LI Tie, LEI Hong, WANG Qiang. Prediction of Macrosegregation of Fe-C Peritectic Alloy Ingot Through Coupling with Thermodynamic Phase Transformation Path[J]. 金属学报, 2021, 57(8): 1057-1072.
[8] ZHANG Lin, GUO Xiao, GAO Jianwen, DENG Anyuan, WANG Engang. Effect of Electromagnetic Stirring on Microstructure and Mechanical Properties of TiB2 Particle-Reinforced Steel[J]. 金属学报, 2020, 56(9): 1239-1246.
[9] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[10] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[11] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[12] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[13] Chunlei WU,Dewei LI,Xiaowei ZHU,Qiang WANG. Influence of Electromagnetic Swirling Flow in Nozzle on Solidification Structure and Macrosegregation of Continuous Casting Square Billet[J]. 金属学报, 2019, 55(7): 875-884.
[14] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[15] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
No Suggested Reading articles found!