|
|
Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars |
ZHANG Haifeng1, YAN Haile1, FANG Feng2, JIA Nan1( ) |
1Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China |
|
Cite this article:
ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars. Acta Metall Sin, 2023, 59(8): 1051-1064.
|
Abstract High-entropy alloys (HEAs) have attracted considerable research attention in the material field because of their outstanding mechanical properties. For metallic materials, grain boundary plays a crucial role in the mechanical behavior and plastic deformation mechanisms. To show the effect of grain boundary on deformation mechanisms in HEAs, the mechanical behavior and evolution of deformation systems in the equiatomic FeMnCoCrNi HEA bicrystals with various orientation combinations during uniaxial tension are investigated using molecular dynamic simulations, and the effect of the orientation relationship between the grain boundary and tensile direction on mechanical behavior is demonstrated. The findings reveal that for all models studied, dislocations nucleate preferentially at the grain boundary and slip into the grains on both sides. Grain boundaries are widened and curved during deformation. Necking tends to occur at the grain boundary when the grain boundary is perpendicular to the tensile direction, which decreases flow stress with increasing loading. For the model with a grain boundary parallel to the deformation direction, the model's flow stress remains at a level above 1 GPa during the whole plastic deformation. The bicrystal with a combination of [111] and [110] orientations shows the most significant fluctuation of flow stress and the highest work hardening ability compared with other models. The decrease in stress with deformation is due to the slip of numerous dislocations, while the high strain hardening ability is caused by the formation of ε-martensite, stacking faults, and twins. Furthermore, the deformation behavior of FeMnCoCrNi, FeCuCoCrNi HEAs, and pure Cu are compared. Compared with Cu, the larger lattice distortion in FeMnCoCrNi and FeCuCoCrNi HEAs makes the grain boundaries coarser, which makes dislocations easy to nucleate under loading, and the formation of ε-martensite is the most outstanding in FeMnCoCrNi HEA with a lower stacking fault energy. The results of this study can guide the design of microstructures and orientations in high-performance HEAs with micron- and nanoscaled grains.
|
Received: 29 November 2021
|
|
Fund: National Natural Science Foundation of China(51922026);Fundamental Research Funds for the Central Universities(N2002005);Fundamental Research Funds for the Central Universities(N2007011);Programme of Introducing Talents of Dis-pline to Universities(B20029) |
Corresponding Authors:
JIA Nan, professor, Tel:(024)83691570, E-mail: jian@atm.neu.edu.cn
|
1 |
Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/(ISSN)1527-2648
|
2 |
Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation [J]. Acta Mater., 2015, 96: 258
doi: 10.1016/j.actamat.2015.06.025
|
3 |
Huang T D, Wu S Y, Jiang H, et al. Effect of Ti content on microstructure and properties of Ti x ZrVNb refractory high-entropy alloys [J]. Int. J. Miner. Metall. Mater., 2020, 27: 1318
doi: 10.1007/s12613-020-2040-1
|
4 |
Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581
pmid: 25190791
|
5 |
Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of Al x Co1.5CrFeNi1.5Ti y high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
doi: 10.1016/j.actamat.2011.06.041
|
6 |
Shuang S, Ding Z Y, Chung D, et al. Corrosion resistant nanostructured eutectic high entropy alloy [J]. Corros. Sci., 2020, 164: 108315
doi: 10.1016/j.corsci.2019.108315
|
7 |
Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
|
8 |
He Z F, Jia N, Yan H L, et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy [J]. Int. J. Plast., 2021, 139: 102965
doi: 10.1016/j.ijplas.2021.102965
|
9 |
Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
|
10 |
Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. JOM, 2013, 65: 1759
doi: 10.1007/s11837-013-0761-6
|
11 |
Yang Y, He Q F. Lattice distortion in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 385
doi: 10.11900/0412.1961.2020.00359
|
|
杨 勇, 赫全锋. 高熵合金中的晶格畸变 [J]. 金属学报, 2021, 57: 385
|
12 |
Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
|
13 |
Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
doi: 10.1038/s41586-020-2275-z
|
14 |
Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nat. Commun., 2019, 10: 3563
doi: 10.1038/s41467-019-11464-7
|
15 |
Sohn S S, Kwiatkowski da Silva A, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
doi: 10.1002/adma.v31.8
|
16 |
Fang W, Yu H Y, Chang R B, et al. Microstructure and mechanical properties of Cr-rich Co-Cr-Fe-Ni high entropy alloys designed by valence electron concentration [J]. Mater. Chem. Phys., 2019, 238: 121897
doi: 10.1016/j.matchemphys.2019.121897
|
17 |
He Z F, Jia N, Wang H W, et al. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature [J]. J. Mater. Sci. Technol., 2021, 86: 158
doi: 10.1016/j.jmst.2020.12.079
|
18 |
Wang H W, He Z F, Jia N. Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure [J]. Acta Metall. Sin., 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
|
|
王洪伟, 何竹风, 贾 楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能 [J]. 金属学报, 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
|
19 |
He Z F, Jia N, Ma D, et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures [J]. Mater. Sci. Eng., 2019, A759: 437
|
20 |
Li L L, Li Z M, Kwiatkowski da Silva A, et al. Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy [J]. Acta Mater., 2019, 178: 1
doi: 10.1016/j.actamat.2019.07.052
|
21 |
Zhang H F, Yan H L, Yu H, et al. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48: 146
doi: 10.1016/j.jmst.2020.03.010
|
22 |
Zhang H F, Yan H L, Fang F, et al. Reverse transformation in [110]-oriented face-centered-cubic single crystals studied by atomic simulations [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1631
doi: 10.1007/s40195-022-01397-4
|
23 |
Farkas D, Caro A. Model interatomic potentials and lattice strain in a high-entropy alloy [J]. J. Mater. Res., 2018, 33: 3218
doi: 10.1557/jmr.2018.245
|
24 |
Li Z M, Tasan C C, Springer H, et al. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys [J]. Sci. Rep., 2017, 7: 40704
doi: 10.1038/srep40704
pmid: 28079175
|
25 |
Zhang H F, Yan H L, Fang F, et al. Orientation-dependent mechanical responses and plastic deformation mechanisms of FeMnCoCrNi high-entropy alloy: A molecular dynamics study [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1511
doi: 10.1007/s40195-021-01260-y
|
26 |
Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
doi: 10.1038/natrevmats.2016.19
|
27 |
Misra A, Thilly L, Editors G. Structural metals at extremes [J]. MRS Bull., 2010, 35: 965
doi: 10.1016/S0025-5408(00)00281-6
|
28 |
Kumar K S, van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys [J]. Acta Mater., 2003, 51: 5743
doi: 10.1016/j.actamat.2003.08.032
|
29 |
Yuasa M, Nakazawa T, Mabuchi M. Atomic simulations of dislocation emission from Cu/Cu and Co/Cu grain boundaries [J]. Mater. Sci. Eng., 2010, A528: 260
|
30 |
Yuasa M, Nakazawa T, Mabuchi M. Atomic simulation of grain boundary sliding in Co/Cu two-phase bicrystals [J]. Mater. Sci. Eng., 2010, A527: 2629
|
31 |
Tan F S, Li J, Feng H, et al. Entropy-induced transition on grain-boundary migration in multi-principal element alloys [J]. Scr. Mater., 2021, 194: 113668
doi: 10.1016/j.scriptamat.2020.113668
|
32 |
Lee H, Shabani M, Pataky G J, et al. Tensile deformation behavior of twist grain boundaries in CoCrFeMnNi high entropy alloy bicrystals [J]. Sci. Rep., 2021, 11: 428
doi: 10.1038/s41598-020-77487-z
pmid: 33431909
|
33 |
Choi W M, Jo Y H, Sohn S S, et al. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: An atomistic simulation study [J]. npj Comput. Mater., 2018, 4: 1
doi: 10.1038/s41524-017-0060-9
|
34 |
Kim Y M, Lee B J. A semi-empirical interatomic potential for the Cu-Ti binary system [J]. Mater. Sci. Eng., 2007, A449-451: 733
|
35 |
Li W, Lu S, Hu Q M, et al. Generalized stacking fault energies of alloys [J]. J. Phys. Condens. Matter, 2014, 26: 265005
doi: 10.1088/0953-8984/26/26/265005
|
36 |
Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
|
37 |
Stukowski A. Sualization and analysis of atomistic simulation data with OVITO—The open visualization tool [J]. Model. Simul. Mater. Sci. Eng., 2010, 18: 015012
|
38 |
Tsuzuki H, Branicio P S, Rino J P. Structural characterization of deformed crystals by analysis of common atomic neighborhood [J]. Comput. Phys. Commun., 2007, 177: 518
doi: 10.1016/j.cpc.2007.05.018
|
39 |
Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data [J]. Model. Simul. Mater. Sci. Eng., 2010, 18: 085001
|
40 |
Huang S, Li W, Lu S, et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy [J]. Scr. Mater., 2015, 108: 44
doi: 10.1016/j.scriptamat.2015.05.041
|
41 |
Pei Z R. An overview of modeling the stacking faults in lightweight and high-entropy alloys: Theory and application [J]. Mater. Sci. Eng., 2018, A737: 132
|
42 |
Tong Y, Jin K, Bei H, et al. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction [J]. Mater. Des., 2018, 155: 1
doi: 10.1016/j.matdes.2018.05.056
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|