Please wait a minute...
Acta Metall Sin  2023, Vol. 59 Issue (8): 1051-1064    DOI: 10.11900/0412.1961.2021.00517
Research paper Current Issue | Archive | Adv Search |
Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars
ZHANG Haifeng1, YAN Haile1, FANG Feng2, JIA Nan1()
1Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819, China
Cite this article: 

ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars. Acta Metall Sin, 2023, 59(8): 1051-1064.

Download:  HTML  PDF(5235KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High-entropy alloys (HEAs) have attracted considerable research attention in the material field because of their outstanding mechanical properties. For metallic materials, grain boundary plays a crucial role in the mechanical behavior and plastic deformation mechanisms. To show the effect of grain boundary on deformation mechanisms in HEAs, the mechanical behavior and evolution of deformation systems in the equiatomic FeMnCoCrNi HEA bicrystals with various orientation combinations during uniaxial tension are investigated using molecular dynamic simulations, and the effect of the orientation relationship between the grain boundary and tensile direction on mechanical behavior is demonstrated. The findings reveal that for all models studied, dislocations nucleate preferentially at the grain boundary and slip into the grains on both sides. Grain boundaries are widened and curved during deformation. Necking tends to occur at the grain boundary when the grain boundary is perpendicular to the tensile direction, which decreases flow stress with increasing loading. For the model with a grain boundary parallel to the deformation direction, the model's flow stress remains at a level above 1 GPa during the whole plastic deformation. The bicrystal with a combination of [111] and [110] orientations shows the most significant fluctuation of flow stress and the highest work hardening ability compared with other models. The decrease in stress with deformation is due to the slip of numerous dislocations, while the high strain hardening ability is caused by the formation of ε-martensite, stacking faults, and twins. Furthermore, the deformation behavior of FeMnCoCrNi, FeCuCoCrNi HEAs, and pure Cu are compared. Compared with Cu, the larger lattice distortion in FeMnCoCrNi and FeCuCoCrNi HEAs makes the grain boundaries coarser, which makes dislocations easy to nucleate under loading, and the formation of ε-martensite is the most outstanding in FeMnCoCrNi HEA with a lower stacking fault energy. The results of this study can guide the design of microstructures and orientations in high-performance HEAs with micron- and nanoscaled grains.

Key words:  high-entropy alloy      bicrystal      grain boundary      plastic deformation mechanism      atomic simulation     
Received:  29 November 2021     
ZTFLH:  TG113.25  
Fund: National Natural Science Foundation of China(51922026);Fundamental Research Funds for the Central Universities(N2002005);Fundamental Research Funds for the Central Universities(N2007011);Programme of Introducing Talents of Dis-pline to Universities(B20029)
Corresponding Authors:  JIA Nan, professor, Tel:(024)83691570, E-mail: jian@atm.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00517     OR     https://www.ams.org.cn/EN/Y2023/V59/I8/1051

Fig.1  Schematics of the bicrystal micropillar models deformed under uniaxial tension (A and B represent the single crystals with different initial orientations and sizes of 15 nm (X) × 15 nm (Y) × 15 nm (Z))
(a) grain boundary is perpendicular to the deformation direction
(b) grain boundary is parallel to the deformation direction
Fig.2  Stress-strain curves (a, c) and corresponding volume fraction evolutions (b, d) of the [110]-oriented FeMnCoCrNi single crystals with domain sizes of 5 nm (X) × 5 nm (Y) × 10 nm (Z) (a, b) and 15 nm (X) × 15 nm (Y) × 30 nm (Z) (c, d) (SF—stacking fault, TB—twin boundary)
Fig.3  Stress-strain curves of the bicrystals with different orientation combinations when the grain boundary is perpendicular to the tensile direction (The shaded areas indicating work hardening)
(a) [001] + [110] (b) [111] + [110]
(c) [001] + [111] (d) [123] + [110]
(e) [001] + [123] (f) [111] + [123]
Crystal typeOrientationStress / GPa
Single crystal[001]5.13
[110]4.11
[111]7.43
[123]4.43
Bicrystal[001] + [110]3.59
[001] + [111]5.12
[001] + [123]3.80
[111] + [110]2.33
[123] + [110]3.70
[111] + [123]4.30
Table 1  Stresses at elastic-to-plastic transition points for the different single crystals and bicrystals when the grain boundary is perpendicular to the tensile direction
Fig.4  Atomic structures (a-f) and corresponding dislocation line distributions (a1-f1) for the FeMnCoCrNi bicrystals with different orientation combinations at elastic-to-plastic transition point when the grain boundary is perpendicular to the tensile direction (a, a1) [001] + [110], engineering strain ε = 4.4% (b, b1) [001] + [111], ε = 4.6% (c, c1) [001] + [123], ε = 4.2% (d, d1) [111] + [110], ε = 1.9% (e, e1) [123] + [110], ε = 3.9% (f, f1) [111] + [123], ε = 3.0%
Fig.5  Atomic structure for the [111] + [110] bicrystal at ε = 20%
Fig.6  Atomic structures (a-f) and corresponding dislocation line distributions (a1-f1) for the FeMnCoCrNi bicrystals with different orientation combinations at ε = 45% when the grain boundary is perpendicular to the tensile direction (a, a1) [001] + [110] (b, b1) [001] + [111] (c, c1) [001] + [123] (d, d1) [111] + [110] (e, e1) [123] + [110] (f, f1) [111] + [123]
Fig.7  Stress-strain curves of the bicrystals with different orientation combinations when the grain boundary is parallel to the tensile direction (The shaded areas indicating work hardening)
(a) [001] + [110] (b) [111] + [110]
(c) [001] + [111] (d) [123] + [110]
(e) [001] + [123] (f) [111] + [123]
Crystal typeOrientationStress / GPa
Single crystal[001]5.13
[110]4.11
[111]7.43
[123]4.43
Bicrystal[001] + [110]3.62
[001] + [111]6.03
[001] + [123]3.83
[111] + [110]3.87
[123] + [110]3.72
[111] + [123]5.28
Table 2  Stresses at elastic-to-plastic transition points for the different single crystals and bicrystals when the grain boundary is parallel to the tensile direction
Fig.8  Atomic structures (a-f) and corresponding dislocation line distributions (a1-f1) for the FeMnCoCrNi bicrystals with different orientation combinations at elastic-to-plastic transition point when the grain boundary is parallel to the tensile direction
(a, a1) [001] + [110], ε = 3.3% (b, b1) [001] + [111], ε = 4.6% (c, c1) [001] + [123], ε = 3.8%
(d, d1) [111] + [110], ε = 2.7% (e, e1) [123] + [110], ε = 3.5% (f, f1) [111] + [123], ε = 3.9%
Fig.9  Atomic structures (a-f) and corresponding dislocation line distributions (a1-f1) for the FeMnCoCrNi bicrystals with different orientation combinations at ε = 100% when the grain boundary is parallel to the tensile direction (a, a1) [001] + [110] (b, b1) [001] + [111] (c, c1) [001] + [123] (d, d1) [111] + [110] (e, e1) [123] + [110] (f, f1) [111] + [123]
Fig.10  Atomic structures (a, c) and distributions of atomic potential energy (b, d) at grain boundaries for FeMnCoCrNi, FeMnCoCrNi, and pure Cu bicrystals when the grain boundary is perpendicular (a, b) and parallel (c, d) to the tensile direction
Fig.11  Stress-strain curves (a1-a3), atomic structures of the [111] + [110] (b1-b3) and [123] + [110] (c1-c3) bicrystals when ε = 5% and ε = 20% of FeMnCoCrNi (a1-c1), FeCuCoCrNi (a2-c2), and Cu (a3-c3) bicrystals when the grain boundary is perpendicular to the tensile direction
Fig.12  Stress-strain curves (a1-a3), atomic structures of the [111] + [110] (b1-b3) and [123] + [110] (c1-c3) bicrystals when ε = 5%, ε = 20%, and ε = 100% of FeMnCoCrNi (a1-c1), FeCuCoCrNi (a2-c2), and Cu (a3-c3) bicrystals when the grain boundary is parallel to the tensile direction
1 Yeh J W, Chen S K, Lin S J, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes [J]. Adv. Eng. Mater., 2004, 6: 299
doi: 10.1002/(ISSN)1527-2648
2 Schuh B, Mendez-Martin F, Völker B, et al. Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation [J]. Acta Mater., 2015, 96: 258
doi: 10.1016/j.actamat.2015.06.025
3 Huang T D, Wu S Y, Jiang H, et al. Effect of Ti content on microstructure and properties of Ti x ZrVNb refractory high-entropy alloys [J]. Int. J. Miner. Metall. Mater., 2020, 27: 1318
doi: 10.1007/s12613-020-2040-1
4 Gludovatz B, Hohenwarter A, Catoor D, et al. A fracture-resistant high-entropy alloy for cryogenic applications [J]. Science, 2014, 345: 1153
doi: 10.1126/science.1254581 pmid: 25190791
5 Chuang M H, Tsai M H, Wang W R, et al. Microstructure and wear behavior of Al x Co1.5CrFeNi1.5Ti y high-entropy alloys [J]. Acta Mater., 2011, 59: 6308
doi: 10.1016/j.actamat.2011.06.041
6 Shuang S, Ding Z Y, Chung D, et al. Corrosion resistant nanostructured eutectic high entropy alloy [J]. Corros. Sci., 2020, 164: 108315
doi: 10.1016/j.corsci.2019.108315
7 Li Z M, Pradeep K G, Deng Y, et al. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off [J]. Nature, 2016, 534: 227
doi: 10.1038/nature17981
8 He Z F, Jia N, Yan H L, et al. Multi-heterostructure and mechanical properties of N-doped FeMnCoCr high entropy alloy [J]. Int. J. Plast., 2021, 139: 102965
doi: 10.1016/j.ijplas.2021.102965
9 Lei Z F, Liu X J, Wu Y, et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes [J]. Nature, 2018, 563: 546
doi: 10.1038/s41586-018-0685-y
10 Yeh J W. Alloy design strategies and future trends in high-entropy alloys [J]. JOM, 2013, 65: 1759
doi: 10.1007/s11837-013-0761-6
11 Yang Y, He Q F. Lattice distortion in high-entropy alloys [J]. Acta Metall. Sin., 2021, 57: 385
doi: 10.11900/0412.1961.2020.00359
杨 勇, 赫全锋. 高熵合金中的晶格畸变 [J]. 金属学报, 2021, 57: 385
12 Miracle D B, Senkov O N. A critical review of high entropy alloys and related concepts [J]. Acta Mater., 2017, 122: 448
doi: 10.1016/j.actamat.2016.08.081
13 Zhang R P, Zhao S T, Ding J, et al. Short-range order and its impact on the CrCoNi medium-entropy alloy [J]. Nature, 2020, 581: 283
doi: 10.1038/s41586-020-2275-z
14 Li Q J, Sheng H, Ma E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways [J]. Nat. Commun., 2019, 10: 3563
doi: 10.1038/s41467-019-11464-7
15 Sohn S S, Kwiatkowski da Silva A, Ikeda Y, et al. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion [J]. Adv. Mater., 2019, 31: 1807142
doi: 10.1002/adma.v31.8
16 Fang W, Yu H Y, Chang R B, et al. Microstructure and mechanical properties of Cr-rich Co-Cr-Fe-Ni high entropy alloys designed by valence electron concentration [J]. Mater. Chem. Phys., 2019, 238: 121897
doi: 10.1016/j.matchemphys.2019.121897
17 He Z F, Jia N, Wang H W, et al. Synergy effect of multi-strengthening mechanisms in FeMnCoCrN HEA at cryogenic temperature [J]. J. Mater. Sci. Technol., 2021, 86: 158
doi: 10.1016/j.jmst.2020.12.079
18 Wang H W, He Z F, Jia N. Microstructure and mechanical properties of a FeMnCoCr high-entropy alloy with heterogeneous structure [J]. Acta Metall. Sin., 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
王洪伟, 何竹风, 贾 楠. 非均匀组织FeMnCoCr高熵合金的微观结构和力学性能 [J]. 金属学报, 2021, 57: 632
doi: 10.11900/0412.1961.2020.00225
19 He Z F, Jia N, Ma D, et al. Joint contribution of transformation and twinning to the high strength-ductility combination of a FeMnCoCr high entropy alloy at cryogenic temperatures [J]. Mater. Sci. Eng., 2019, A759: 437
20 Li L L, Li Z M, Kwiatkowski da Silva A, et al. Segregation-driven grain boundary spinodal decomposition as a pathway for phase nucleation in a high-entropy alloy [J]. Acta Mater., 2019, 178: 1
doi: 10.1016/j.actamat.2019.07.052
21 Zhang H F, Yan H L, Yu H, et al. The effect of Co and Cr substitutions for Ni on mechanical properties and plastic deformation mechanism of FeMnCoCrNi high entropy alloys [J]. J. Mater. Sci. Technol., 2020, 48: 146
doi: 10.1016/j.jmst.2020.03.010
22 Zhang H F, Yan H L, Fang F, et al. Reverse transformation in [110]-oriented face-centered-cubic single crystals studied by atomic simulations [J]. Acta Metall. Sin. (Engl. Lett.), 2022, 35: 1631
doi: 10.1007/s40195-022-01397-4
23 Farkas D, Caro A. Model interatomic potentials and lattice strain in a high-entropy alloy [J]. J. Mater. Res., 2018, 33: 3218
doi: 10.1557/jmr.2018.245
24 Li Z M, Tasan C C, Springer H, et al. Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys [J]. Sci. Rep., 2017, 7: 40704
doi: 10.1038/srep40704 pmid: 28079175
25 Zhang H F, Yan H L, Fang F, et al. Orientation-dependent mechanical responses and plastic deformation mechanisms of FeMnCoCrNi high-entropy alloy: A molecular dynamics study [J]. Acta Metall. Sin. (Engl. Lett.), 2021, 34: 1511
doi: 10.1007/s40195-021-01260-y
26 Lu K. Stabilizing nanostructures in metals using grain and twin boundary architectures [J]. Nat. Rev. Mater., 2016, 1: 16019
doi: 10.1038/natrevmats.2016.19
27 Misra A, Thilly L, Editors G. Structural metals at extremes [J]. MRS Bull., 2010, 35: 965
doi: 10.1016/S0025-5408(00)00281-6
28 Kumar K S, van Swygenhoven H, Suresh S. Mechanical behavior of nanocrystalline metals and alloys [J]. Acta Mater., 2003, 51: 5743
doi: 10.1016/j.actamat.2003.08.032
29 Yuasa M, Nakazawa T, Mabuchi M. Atomic simulations of dislocation emission from Cu/Cu and Co/Cu grain boundaries [J]. Mater. Sci. Eng., 2010, A528: 260
30 Yuasa M, Nakazawa T, Mabuchi M. Atomic simulation of grain boundary sliding in Co/Cu two-phase bicrystals [J]. Mater. Sci. Eng., 2010, A527: 2629
31 Tan F S, Li J, Feng H, et al. Entropy-induced transition on grain-boundary migration in multi-principal element alloys [J]. Scr. Mater., 2021, 194: 113668
doi: 10.1016/j.scriptamat.2020.113668
32 Lee H, Shabani M, Pataky G J, et al. Tensile deformation behavior of twist grain boundaries in CoCrFeMnNi high entropy alloy bicrystals [J]. Sci. Rep., 2021, 11: 428
doi: 10.1038/s41598-020-77487-z pmid: 33431909
33 Choi W M, Jo Y H, Sohn S S, et al. Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: An atomistic simulation study [J]. npj Comput. Mater., 2018, 4: 1
doi: 10.1038/s41524-017-0060-9
34 Kim Y M, Lee B J. A semi-empirical interatomic potential for the Cu-Ti binary system [J]. Mater. Sci. Eng., 2007, A449-451: 733
35 Li W, Lu S, Hu Q M, et al. Generalized stacking fault energies of alloys [J]. J. Phys. Condens. Matter, 2014, 26: 265005
doi: 10.1088/0953-8984/26/26/265005
36 Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
37 Stukowski A. Sualization and analysis of atomistic simulation data with OVITO—The open visualization tool [J]. Model. Simul. Mater. Sci. Eng., 2010, 18: 015012
38 Tsuzuki H, Branicio P S, Rino J P. Structural characterization of deformed crystals by analysis of common atomic neighborhood [J]. Comput. Phys. Commun., 2007, 177: 518
doi: 10.1016/j.cpc.2007.05.018
39 Stukowski A, Albe K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data [J]. Model. Simul. Mater. Sci. Eng., 2010, 18: 085001
40 Huang S, Li W, Lu S, et al. Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy [J]. Scr. Mater., 2015, 108: 44
doi: 10.1016/j.scriptamat.2015.05.041
41 Pei Z R. An overview of modeling the stacking faults in lightweight and high-entropy alloys: Theory and application [J]. Mater. Sci. Eng., 2018, A737: 132
42 Tong Y, Jin K, Bei H, et al. Local lattice distortion in NiCoCr, FeCoNiCr and FeCoNiCrMn concentrated alloys investigated by synchrotron X-ray diffraction [J]. Mater. Des., 2018, 155: 1
doi: 10.1016/j.matdes.2018.05.056
[1] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[2] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[5] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
[6] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[7] YANG Du, BAI Qin, HU Yue, ZHANG Yong, LI Zhijun, JIANG Li, XIA Shuang, ZHOU Bangxin. Fractal Analysis of the Effect of Grain Boundary Character on Te-Induced Brittle Cracking in GH3535 Alloy[J]. 金属学报, 2023, 59(2): 248-256.
[8] MIAO Junwei, WANG Mingliang, ZHANG Aijun, LU Yiping, WANG Tongmin, LI Tingju. Tribological Properties and Wear Mechanism of AlCr1.3TiNi2 Eutectic High-Entropy Alloy at Elevated Temperature[J]. 金属学报, 2023, 59(2): 267-276.
[9] LI Xin, JIANG He, YAO Zhihao, DONG Jianxin. Theoretical Calculation and Analysis of the Effect of Oxygen Atom on the Grain Boundary of Superalloy Matrices Ni, Co and NiCr[J]. 金属学报, 2023, 59(2): 309-318.
[10] HU Wenbin, ZHANG Xiaowen, SONG Longfei, LIAO Bokai, WAN Shan, KANG Lei, GUO Xingpeng. Corrosion Behavior of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy in Sulfuric Acid Solution[J]. 金属学报, 2023, 59(12): 1644-1654.
[11] LIU Lujun, LIU Zheng, LIU Renhui, LIU Yong. Grain Boundary Structure and Coercivity Enhancement of Nd90Al10 Alloy Modified NdFeB Permanent Magnets by GBD Process[J]. 金属学报, 2023, 59(11): 1457-1465.
[12] HAN Linzhi, MU Juan, ZHOU Yongkang, ZHU Zhengwang, ZHANG Haifeng. Effect of Heat Treatment Temperature on Microstructure and Mechanical Properties of Ti0.5Zr1.5NbTa0.5Sn0.2 High-Entropy Alloy[J]. 金属学报, 2022, 58(9): 1159-1168.
[13] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[14] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[15] XU Liujie, ZONG Le, LUO Chunyang, JIAO Zhaolin, WEI Shizhong. Toughening Pathways and Regulatory Mechanisms of Refractory High-Entropy Alloys[J]. 金属学报, 2022, 58(3): 257-271.
No Suggested Reading articles found!