Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application
CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli()
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
Cite this article:
CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application. Acta Metall Sin, 2022, 58(7): 837-856.
Titanium and titanium alloys have widely been used in biomedical applications as main substitutes for hard human tissues. To better meet the needs of safety, comfort, and durability of titanium and titanium alloys after implantation in the human body, the surface modification treatment of titanium and titanium alloys has become a research hotspot. In this review, based on the basic properties and existing problems of titanium and titanium alloys, the methods of surface modification for titanium and titanium alloys are introduced to improve their mechanical properties, biocompatibility, and bacteriostatic/antibacterial properties. Furthermore, the current challenges and prospects have been presented in this paper.
Fig.1 Schematics of the preparation of titanium alloy by arc melting and its application (a) and high temperature gas heat treatment of titanium alloy (b)
Fig.2 Schematics of the preparation of Ti-Mg alloy by spark plasma sintering (a) and laser surface modification of Ti alloy (b)
Fig.3 Schematics of sandblasting, acid etching, and their combination (a), 3D printing (b), and laser surface texturing (c)
Fig.4 Schematics of coatings prepared by plasma spraying (a), coatings prepared by pulsed laser deposition (b), surface modification by anodizing/plasma electrolytic oxidation/micro-arc oxidation (c), and gene therapy (d)
Fig.5 Schematics of superhydrophobic antibacterial (a1), hydrophilic antibacterial (a2), and surface biomimetic structure antibacterial (a3); drugs antibacterial (b1), positively charged materials antibacterial (b2), and metal ions antibacterial (b3)
Fig.6 Schematics of photothermal antibacterial (a), photodynamic antibacterial (b), and photoacoustic antibacterial (c) (ROS—reactive oxygen species, 1O2—singlet oxygen)
1
Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review [J]. Prog. Mater. Sci., 2009, 54: 397
doi: 10.1016/j.pmatsci.2008.06.004
2
Long M, Rack H J. Titanium alloys in total joint replacement—A materials science perspective [J]. Biomaterials, 1998, 19: 1621
pmid: 9839998
3
Elias C N, Lima J H C, Valiev R, et al. Biomedical applications of titanium and its alloys [J]. JOM, 2008, 60(3): 46
4
Fonseca-García A, Pérez-Alvarez J, Barrera C C, et al. The effect of simulated inflammatory conditions on the surface properties of titanium and stainless steel and their importance as biomaterials [J]. Mater. Sci. Eng., 2016, C66: 119
5
Barceloux D G. Chromium [J]. J. Toxicol.: Clin. Toxicol., 1999, 37: 173
doi: 10.1081/CLT-100102418
6
Nickens K P, Patierno S R, Ceryak S. Chromium genotoxicity: A double-edged sword [J]. Chem. Biol. Interact., 2010, 188: 276
doi: 10.1016/j.cbi.2010.04.018
7
Paustenbach D J, Tvermoes B E, Unice K M, et al. A review of the health hazards posed by cobalt [J]. Crit. Rev. Toxicol., 2013, 43: 316
doi: 10.3109/10408444.2013.779633
pmid: 23656559
8
Pavesi T, Moreira J C. Mechanisms and individuality in chromium toxicity in humans [J]. J. Appl. Toxicol., 2020, 40: 1183
doi: 10.1002/jat.3965
9
Kaur M, Singh K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications [J]. Mater. Sci. Eng., 2019, C102: 844
10
Chen L Y, Cui Y W, Zhang L C. Recent development in beta titanium alloys for biomedical applications [J]. Metals, 2020, 10: 1139
doi: 10.3390/met10091139
11
Niinomi M, Liu Y, Nakai M, et al. Biomedical titanium alloys with Young's moduli close to that of cortical bone [J]. Regen. Biomater., 2016, 3: 173
doi: 10.1093/rb/rbw016
pmid: 27252887
12
Wang L Q, Lu W J, Qin J N, et al. Effect of precipitation phase on microstructure and superelasticity of cold-rolled beta titanium alloy during heat treatment [J]. Mater. Des., 2009, 30: 3873
doi: 10.1016/j.matdes.2009.03.042
13
Wang L Q, Xie L C, Lv Y T, et al. Microstructure evolution and superelastic behavior in Ti-35Nb-2Ta-3Zr alloy processed by friction stir processing [J]. Acta Mater., 2017, 131: 499
doi: 10.1016/j.actamat.2017.03.079
14
Gode C, Attarilar S, Eghbali B, et al. Electrochemical behavior of equal channel angular pressed titanium for biomedical application [C]. AIP Conf. Proc., 2015, 1653: 020041
15
Apaza-Bedoya K, Tarce M, Benfatti C A M, et al. Synergistic interactions between corrosion and wear at titanium-based dental implant connections: A scoping review [J]. J. Periodontal Res., 2017, 52: 946
doi: 10.1111/jre.12469
pmid: 28612506
16
Goldberg J R, Gilbert J L, Jacobs J J, et al. A multicenter retrieval study of the taper interfaces of modular hip prostheses [J]. Clin. Orthop. Relat. Res., 2002, 401: 149
doi: 10.1097/00003086-200208000-00018
17
Takai S, Yoshino N, Kusaka Y, et al. Dissemination of metals from a failed patellar component made of titanium-base alloy [J]. J. Arthroplasty, 2003, 18: 931
doi: 10.1016/S0883-5403(03)00277-8
18
Moretti B, Pesce V, Maccagnano G, et al. Peripheral neuropathy after hip replacement failure: Is vanadium the culprit? [J]. Lancet, 2012, 379: 1676
doi: 10.1016/S0140-6736(12)60273-6
pmid: 22541583
19
Gilbert J L, Mali S, Urban R M, et al. In vivo oxide-induced stress corrosion cracking of Ti-6Al-4V in a neck-stem modular taper: Emergent behavior in a new mechanism of in vivo corrosion [J]. J. Biomed. Mater. Res., 2012, 100B: 584
doi: 10.1002/jbm.b.31943
20
Tsaryk R, Peters K, Barth S, et al. The role of oxidative stress in pro-inflammatory activation of human endothelial cells on Ti6Al4V alloy [J]. Biomaterials, 2013, 34: 8075
doi: 10.1016/j.biomaterials.2013.07.030
pmid: 23891083
21
Mouthuy P A, Snelling S J B, Dakin S G, et al. Biocompatibility of implantable materials: An oxidative stress viewpoint [J]. Biomaterials, 2016, 109: 55
doi: 10.1016/j.biomaterials.2016.09.010
22
Kasai Y, Iida R, Uchida A. Metal concentrations in the serum and hair of patients with titanium alloy spinal implants [J]. Spine, 2003, 28: 1320
23
Verstraeten S V, Aimo L, Oteiza P I. Aluminium and lead: Molecular mechanisms of brain toxicity [J]. Arch. Toxicol., 2008, 82: 789
doi: 10.1007/s00204-008-0345-3
pmid: 18668223
24
Jafari M S, Coyle C, Mortazavi J S M, et al. Revision hip arthroplasty: Infection is the most common cause of failure [J]. Clin. Orthop. Relat. Res., 2010, 468: 2046
doi: 10.1007/s11999-010-1251-6
25
Le D H, Goodman S B, Maloney W J, et al. Current modes of failure in TKA: Infection, instability, and stiffness predominate [J]. Clin. Orthop. Relat. Res., 2014, 472: 2197
doi: 10.1007/s11999-014-3540-y
26
Chouirfa H, Bouloussa H, Migonney V, et al. Review of titanium surface modification techniques and coatings for antibacterial applications [J]. Acta Biomater., 2019, 83: 37
doi: S1742-7061(18)30635-4
pmid: 30541702
27
Maher S, Mazinani A, Barati M R, et al. Engineered titanium implants for localized drug delivery: Recent advances and perspectives of titania nanotubes arrays [J]. Expert Opin. Drug Deliv., 2018, 15: 1021
doi: 10.1080/17425247.2018.1517743
28
Correa D R N, Kuroda P A B, Lourenço M L, et al. Development of Ti-15Zr-Mo alloys for applying as implantable biomedical devices [J]. J. Alloys Compd., 2018, 749: 163
doi: 10.1016/j.jallcom.2018.03.308
29
Bai Y J, Deng Y, Zheng Y F, et al. Characterization, corrosion behavior, cellular response and in vivo bone tissue compatibility of titanium-niobium alloy with low Young's modulus [J]. Mater. Sci. Eng., 2016, C59: 565
30
Ou K L, Weng C C, Lin Y H, et al. A promising of alloying modified beta-type titanium-niobium implant for biomedical applications: Microstructural characteristics, in vitro biocompatibility and antibacterial performance [J]. J. Alloys Compd., 2017, 697: 231
doi: 10.1016/j.jallcom.2016.12.120
31
Zhou Y, Li Y X, Yang X J, et al. Influence of Zr content on phase transformation, microstructure and mechanical properties of Ti75 - x Nb25Zr x (x = 0-6) alloys [J]. J. Alloys Compd., 2009, 486: 628
doi: 10.1016/j.jallcom.2009.07.006
32
Qiu K J, Liu Y, Zhou F Y, et al. Microstructure, mechanical properties, castability and in vitro biocompatibility of Ti-Bi alloys developed for dental applications [J]. Acta Biomater., 2015, 15: 254
doi: 10.1016/j.actbio.2015.01.009
pmid: 25595472
33
Ahn H, Lee D, Lee K M, et al. Oxidation behavior and corrosion resistance of Ti-10Ta-10Nb alloy [J]. Surf. Coat. Technol., 2008, 202: 5784
doi: 10.1016/j.surfcoat.2008.06.074
34
Nune K C, Misra R D K, Li S J, et al. Osteoblast cellular activity on low elastic modulus Ti-24Nb-4Zr-8Sn alloy [J]. Dent. Mater., 2017, 33: 152
doi: S0109-5641(16)30629-7
pmid: 27889088
35
Zheng Y F, Zhang B B, Wang B L, et al. Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag [J]. Acta Biomater., 2011, 7: 2758
doi: 10.1016/j.actbio.2011.02.010
pmid: 21316493
36
Li H B, Cui Z D, Li Z Y, et al. Effect of gas nitriding treatment on cavitation erosion behavior of commercially pure Ti and Ti-6Al-4V alloy [J]. Surf. Coat. Technol., 2013, 221: 29
doi: 10.1016/j.surfcoat.2013.01.023
37
Li H B, Cui Z D, Li Z Y, et al. Microstructure and cavitation erosion properties of ceramic coatings fabricated on Ti-6Al-4V alloy by pack carburizing [J]. J. Mater. Eng. Perform., 2014, 23: 2772
doi: 10.1007/s11665-014-1030-8
38
Zhu Y H, Wang W, Jia X Y, et al. Deposition of TiC film on titanium for abrasion resistant implant material by ion-enhanced triode plasma CVD [J]. Appl. Surf. Sci., 2012, 262: 156
doi: 10.1016/j.apsusc.2012.03.152
39
Li Q, Niinomi M, Nakai M, et al. Improvements in the superelasticity and change in deformation mode of β-type TiNb24Zr2 alloys caused by aging treatments [J]. Metall. Mater. Trans., 2011, 42A: 2843
40
Liu Y, Li K Y, Luo T, et al. Powder metallurgical low-modulus Ti-Mg alloys for biomedical applications [J]. Mater. Sci. Eng., 2015, C56: 241
41
Karre R, Kodli B K, Rajendran A, et al. Comparative study on Ti-Nb binary alloys fabricated through spark plasma sintering and conventional P/M routes for biomedical application [J]. Mater. Sci. Eng., 2019, C94: 619
42
Attar H, Calin M, Zhang L C, et al. Manufacture by selective laser melting and mechanical behavior of commercially pure titanium [J]. Mater. Sci. Eng., 2014, A593: 170
43
Li X P, Van Humbeeck J, Kruth J P. Selective laser melting of weak-textured commercially pure titanium with high strength and ductility: A study from laser power perspective [J]. Mater. Des., 2017, 116: 352
doi: 10.1016/j.matdes.2016.12.019
44
García I, De Damborenea J J. Corrosion properties of tin prepared by laser gas alloying of Ti and Ti6Al4V [J]. Corros. Sci., 1998, 40: 1411
doi: 10.1016/S0010-938X(98)00046-8
45
Jiang P, He X L, Li X X, et al. Wear resistance of a laser surface alloyed Ti-6Al-4V alloy [J]. Surf. Coat. Technol., 2000, 130: 24
doi: 10.1016/S0257-8972(00)00680-0
46
Yue T M, Yu J K, Mei Z, et al. Excimer laser surface treatment of Ti-6Al-4V alloy for corrosion resistance enhancement [J]. Mater. Lett., 2002, 52: 206
doi: 10.1016/S0167-577X(01)00395-0
47
Hays S J. Therapeutic approaches to the treatment of neuroinflammatory diseases [J]. Curr. Pharm. Des., 1998, 4: 335
48
Wang D, He G, Tian Y, et al. Dual effects of acid etching on cell responses and mechanical properties of porous titanium with controllable open-porous structure [J]. J. Biomed. Mater. Res., 2020, 108B: 2386
49
Szmukler-Moncler S, Perrin D, Ahossi V, et al. Biological properties of acid etched titanium implants: Effect of sandblasting on bone anchorage [J]. J. Biomed. Mater. Res., 2004, 68B: 149
doi: 10.1002/jbm.b.20003
50
Baleani M, Viceconti M, Toni A. The effect of sandblasting treatment on endurance properties of titanium alloy hip prostheses [J]. Artif. Organs, 2000, 24: 296
pmid: 10816203
51
Szmukler-Moncler S, Testori T, Bernard J P. Etched implants: A comparative surface analysis of four implant systems [J]. J. Biomed. Mater. Res., 2004, 69B: 46
doi: 10.1002/jbm.b.20021
52
Wennerberg A, Albrektsson T. Effects of titanium surface topography on bone integration: A systematic review [J]. Clin. Oral Implants Res., 2009, 20: 172
doi: 10.1111/j.1600-0501.2009.01775.x
53
Klokkevold P R, Johnson P, Dadgostari S, et al. Early endosseous integration enhanced by dual acid etching of titanium: A torque removal study in the rabbit [J]. Clin. Oral Implants Res., 2001, 12: 350
doi: 10.1034/j.1600-0501.2001.012004350.x
54
Ferraris S, Venturello A, Miola M, et al. Antibacterial and bioactive nanostructured titanium surfaces for bone integration [J]. Appl. Surf. Sci., 2014, 311: 279
doi: 10.1016/j.apsusc.2014.05.056
55
Li J, Zhou P, Attarilar S, et al. Innovative surface modification procedures to achieve micro/nano-graded Ti-based biomedical alloys and implants [J]. Coatings, 2021, 11: 647
doi: 10.3390/coatings11060647
56
Chiang H J, Hsu H J, Peng P W, et al. Early bone response to machined, sandblasting acid etching (SLA) and novel surface-functionalization (SLAffinity) titanium implants: Characterization, biomechanical analysis and histological evaluation in pigs [J]. J. Biomed. Mater. Res., 2016, 104A: 397
57
Gupta N, Santhiya D, Murugavel S, et al. Effects of transition metal ion dopants (Ag, Cu and Fe) on the structural, mechanical and antibacterial properties of bioactive glass [J]. Colloids Surf., 2018, 538A: 393
58
Attarilar S, Ebrahimi M, Djavanroodi F, et al. 3D printing technologies in metallic implants: A thematic review on the techniques and procedures [J]. Int. J. Bioprint., 2021, 7: 306
59
Kurella A, Dahotre N B. Review paper: Surface modification for bioimplants: The role of laser surface engineering [J]. J. Biomater. Appl., 2005, 20: 5
pmid: 15972362
60
Tiainen L, Abreu P, Buciumeanu M, et al. Novel laser surface texturing for improved primary stability of titanium implants [J]. J. Mech. Behav. Biomed. Mater., 2019, 98: 26
doi: S1751-6161(18)31498-X
pmid: 31176991
61
Cunha A, Elie A M, Plawinski L, et al. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation [J]. Appl. Surf. Sci., 2016, 360: 485
doi: 10.1016/j.apsusc.2015.10.102
62
Lee B H, Kim J K, Kim Y D, et al. In vivo behavior and mechanical stability of surface-modified titanium implants by plasma spray coating and chemical treatments [J]. J. Biomed. Mater. Res., 2004, 69A: 279
doi: 10.1002/jbm.a.20126
63
Sargin F, Erdogan G, Kanbur K, et al. Investigation of in vitro behavior of plasma sprayed Ti, TiO2 and HA coatings on peek [J]. Surf. Coat. Technol., 2021, 411: 126965
doi: 10.1016/j.surfcoat.2021.126965
64
Khor K A, Gu Y W, Quek C H, et al. Plasma spraying of functionally graded hydroxyapatite/Ti-6Al-4V coatings [J]. Surf. Coat. Technol., 2003, 168: 195
doi: 10.1016/S0257-8972(03)00238-X
65
Hameed P, Gopal V, Bjorklund S, et al. Axial suspension plasma spraying: An ultimate technique to tailor Ti6Al4V surface with hap for orthopaedic applications [J]. Colloids Surf., 2019, 173B: 806
66
Singh H, Prakash C, Singh S. Plasma spray deposition of HA-TiO2 on β-phase Ti-35Nb-7Ta-5Zr alloy for hip stem: Characterization of bio-mechanical properties, wettability, and wear resistance [J]. J. Bionic Eng., 2020, 17: 1029
doi: 10.1007/s42235-020-0081-9
67
Duta L. In vivo assessment of synthetic and biological-derived calcium phosphate-based coatings fabricated by pulsed laser deposition: A review [J]. Coatings, 2021, 11: 99
doi: 10.3390/coatings11010099
68
Galindo-Valdés J S, Cortés-Hernández D A, Ortiz-Cuellar J C, et al. Laser deposition of bioactive coatings by in situ synthesis of pseudowollastonite on Ti6Al4V alloy [J]. Opt. Laser Technol., 2021, 134: 106586
doi: 10.1016/j.optlastec.2020.106586
69
Cao J X, Lian R Z, Jiang X H. Magnesium and fluoride doped hydroxyapatite coatings grown by pulsed laser deposition for promoting titanium implant cytocompatibility [J]. Appl. Surf. Sci., 2020, 515: 146069
doi: 10.1016/j.apsusc.2020.146069
70
Zaveri N, Mahapatra M, Deceuster A, et al. Corrosion resistance of pulsed laser-treated Ti-6Al-4V implant in simulated biofluids [J]. Electrochim. Acta, 2008, 53: 5022
doi: 10.1016/j.electacta.2008.01.086
71
Chen L Y, Komasa S, Hashimoto Y, et al. In vitro and in vivo osteogenic activity of titanium implants coated by pulsed laser deposition with a thin film of fluoridated hydroxyapatite [J]. Int. J. Mol. Sci., 2018, 19: 1127
doi: 10.3390/ijms19041127
72
Pelletier H, Nelea V, Mille P, et al. Mechanical properties of pulsed laser-deposited hydroxyapatite thin film implanted at high energy with N+ and Ar+ ions. Part I: nanoindentation with spherical tipped indenter [J]. Nucl. Instrum. Methods Phys. Res., 2004, 216B: 269
73
D'Alessio L, Ferro D, Marotta V, et al. Laser ablation and deposition of bioglass® 45S5 thin films [J]. Appl. Surf. Sci., 2001, 183: 10
doi: 10.1016/S0169-4332(01)00466-4
74
Gnanavel S, Ponnusamy S, Mohan L, et al. Electrochemical behavior of biomedical titanium alloys coated with diamond carbon in Hanks' solution [J]. J. Mater. Eng. Perform., 2018, 27: 1635
doi: 10.1007/s11665-018-3250-9
75
Kaliaraj G S, Bavanilathamuthiah M, Kirubaharan K, et al. Bio-inspired YSZ coated titanium by EB-PVD for biomedical applications [J]. Surf. Coat. Technol., 2016, 307: 227
doi: 10.1016/j.surfcoat.2016.08.039
76
Paital S R, Dahotre N B. Calcium phosphate coatings for bio-implant applications: Materials, performance factors, and methodologies [J]. Mater. Sci. Eng., 2009, R66: 1
77
Oyane A, Wang X P, Sogo Y, et al. Calcium phosphate composite layers for surface-mediated gene transfer [J]. Acta Biomater., 2012, 8: 2034
doi: 10.1016/j.actbio.2012.02.003
78
Surmenev R A, Surmeneva M A, Ivanova A A. Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis—A review [J]. Acta Biomater., 2014, 10: 557
doi: 10.1016/j.actbio.2013.10.036
pmid: 24211734
79
Liu B, Shi X M, Xiao G Y, et al. In-situ preparation of scholzite conversion coatings on titanium and Ti-6Al-4V for biomedical applications [J]. Colloids Surf., 2017, 153B: 291
80
Yu W Z, Zhang Y Z, Liu X M, et al. Synergistic antibacterial activity of multi components in lysozyme/chitosan/silver/hydroxyapatite hybrid coating [J]. Mater. Des., 2018, 139: 351
doi: 10.1016/j.matdes.2017.11.018
81
Liu X H, Wu L, Ai H J, et al. Cytocompatibility and early osseointegration of nano TiO2-modified Ti-24Nb-4Zr-7.9Sn surfaces [J]. Mater. Sci. Eng., 2015, C48: 256
82
Zhang X M, Li Z Y, Yuan X B, et al. Fabrication of dopamine-modified hyaluronic acid/chitosan multilayers on titanium alloy by layer-by-layer self-assembly for promoting osteoblast growth [J]. Appl. Surf. Sci., 2013, 284: 732
doi: 10.1016/j.apsusc.2013.08.002
83
İzmir M, Ercan B. Anodization of titanium alloys for orthopedic applications [J]. Front. Chem. Sci. Eng., 2019, 13: 28
doi: 10.1007/s11705-018-1759-y
84
Minagar S, Berndt C C, Wang J, et al. A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces [J]. Acta Biomater., 2012, 8: 2875
doi: 10.1016/j.actbio.2012.04.005
85
Schwartz Z, Olivares-Navarrete R, Wieland M, et al. Mechanisms regulating increased production of osteoprotegerin by osteoblasts cultured on microstructured titanium surfaces [J]. Biomaterials, 2009, 30: 3390
doi: 10.1016/j.biomaterials.2009.03.047
pmid: 19395022
86
Kim M J, Kim C W, Lim Y J, et al. Microrough titanium surface affects biologic response in MG63 osteoblast-like cells [J]. J. Biomed. Mater. Res., 2006, 79A: 1023
doi: 10.1002/jbm.a.31040
87
Yu W Q, Jiang X Q, Zhang F Q, et al. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation [J]. J. Biomed. Mater. Res., 2010, 94A: 1012
88
Zhao L Z, Mei S L, Chu P K, et al. The influence of hierarchical hybrid micro/nano-textured titanium surface with titania nanotubes on osteoblast functions [J]. Biomaterials, 2010, 31: 5072
doi: 10.1016/j.biomaterials.2010.03.014
89
Huang X B, Liu Y P, Yu H W, et al. One-step fabrication of cytocompatible micro/nano-textured surface with TiO2 mesoporous arrays on titanium by high current anodization [J]. Electrochim. Acta, 2016, 199: 116
doi: 10.1016/j.electacta.2016.03.119
90
Hu N, Wu Y Z, Xie L X, et al. Enhanced interfacial adhesion and osseointegration of anodic TiO2 nanotube arrays on ultra-fine-grained titanium and underlying mechanisms [J]. Acta Biomater., 2020, 106: 360
doi: 10.1016/j.actbio.2020.02.009
91
Lee J K, Choi D S, Jang I, et al. Improved osseointegration of dental titanium implants by TiO2 nanotube arrays with recombinant human bone morphogenetic protein-2: A pilot in vivo study [J]. Int. J. Nanomedicine, 2015, 10: 1145
92
Su E P, Justin D E, Pratt C R, et al. Effects of titanium nanotubes on the osseointegration, cell differentiation, mineralisation and antibacterial properties of orthopaedic implant surfaces [J]. Bone Joint J., 2018, 100-B: 9
93
Kim S Y, Kim Y K, Park I S, et al. Effect of alkali and heat treatments for bioactivity of TiO2 nanotubes [J]. Appl. Surf. Sci., 2014, 321: 412
doi: 10.1016/j.apsusc.2014.09.177
94
Kang M K, Moon S K, Kim K M, et al. Antibacterial effect and cytocompatibility of nano-structured TiO2 film containing Cl [J]. Dent. Mater. J., 2011, 30: 790
doi: 10.4012/dmj.2011-021
95
Liang Y Q, Yang X J, Cui Z D, et al. Self-organized nanotubular layer on Ti-4Zr-22Nb-2Sn alloys formed in organic electrolytes [J]. J. Mater. Res., 2009, 24: 3647
doi: 10.1557/jmr.2009.0427
96
Shin K R, Kim Y S, Kim G W, et al. Effects of concentration of Ag nanoparticles on surface structure and in vitro biological responses of oxide layer on pure titanium via plasma electrolytic oxidation [J]. Appl. Surf. Sci., 2015, 347: 574
doi: 10.1016/j.apsusc.2015.04.161
97
Kaluđerović M R, Schreckenbach J P, Graf H L. First titanium dental implants with white surfaces: Preparation and in vitro tests [J]. Dent. Mater., 2014, 30: 759
doi: 10.1016/j.dental.2014.04.005
pmid: 24853435
98
Wang H Y, Zhu R F, Lu Y P, et al. Preparation and properties of plasma electrolytic oxidation coating on sandblasted pure titanium by a combination treatment [J]. Mater. Sci. Eng., 2014, C42: 657
99
Hong M H, Lee D H, Kim K M, et al. Study on bioactivity and bonding strength between Ti alloy substrate and TiO2 film by micro-arc oxidation [J]. Thin Solid Films, 2011, 519: 7065
doi: 10.1016/j.tsf.2011.01.223
100
Wang R Y, He X J, Gao Y E, et al. Antimicrobial property, cytocompatibility and corrosion resistance of Zn-doped ZrO2/TiO2 coatings on Ti6Al4V implants [J]. Mater. Sci. Eng., 2017, C75: 7
101
Matos A O, Ricomini-Filho A P, Beline T, et al. Three-species biofilm model onto plasma-treated titanium implant surface [J]. Colloids Surf., 2017, 152B: 354
102
Zhang J, Tu Q S, Bonewald L F, et al. Effects of miR-335-5p in modulating osteogenic differentiation by specifically downregulating Wnt antagonist DKK1 [J]. J. Bone Miner. Res., 2011, 26: 1953
doi: 10.1002/jbmr.377
pmid: 21351149
103
Li Y, Fan L K, Liu S Y, et al. The promotion of bone regeneration through positive regulation of angiogenic-osteogenic coupling using microRNA-26a [J]. Biomaterials, 2013, 34: 5048
doi: 10.1016/j.biomaterials.2013.03.052
104
Suh J S, Lee J Y, Choi Y S, et al. Erratum to ‘Peptide-mediated intracellular delivery of miRNA-29b for osteogenic stem cell differentiation' [Biomaterials 34 (2013) 4347-4359] [J]. Biomaterials, 2014, 35: 5039
doi: 10.1016/j.biomaterials.2014.03.010
105
Meng Y B, Li X, Li Z Y, et al. Surface functionalization of titanium alloy with miR-29b nanocapsules to enhance bone regeneration [J]. ACS Appl. Mater. Interfaces, 2016, 8: 5783
doi: 10.1021/acsami.5b10650
106
Geng Z, Wang X G, Zhao J, et al. The synergistic effect of strontium-substituted hydroxyapatite and microRNA-21 on improving bone remodeling and osseointegration [J]. Biomater. Sci., 2018, 6: 2694
doi: 10.1039/C8BM00716K
107
Geng Z, Yu Y M, Li Z Y, et al. Mir-21 promotes osseointegration and mineralization through enhancing both osteogenic and osteoclastic expression [J]. Mater. Sci. Eng., 2020, C111: 110785
108
Zhang X M, Zhu S L, Li Z Y, et al. Multilayer modification on titanium surface for in situ delivery of MicroRNAs [J]. Mater. Lett., 2014, 133: 243
doi: 10.1016/j.matlet.2014.07.024
109
Shahriyari F, Razaghian A, Taghiabadi R, et al. Effect of friction hardening pre-treatment on increasing cytocompatibility of alkali heat-treated Ti-6Al-4V alloy [J]. Surf. Coat. Technol., 2018, 353: 148
doi: 10.1016/j.surfcoat.2018.08.051
110
Sun Y S, Chang J H, Huang H H. Enhancing the biological response of titanium surface through the immobilization of bone morphogenetic protein-2 using the natural cross-linker genipin [J]. Surf. Coat. Technol., 2016, 303: 289
doi: 10.1016/j.surfcoat.2016.02.051
111
Hu H, Cui Z D, Zhu S L, et al. Preparation of hydroxyapatite layer on Ti-based bulk metallic glasses by acid and alkali pre-treatment [J]. Rare Met., 2015, 34: 22
doi: 10.1007/s12598-014-0402-4
112
Chen M F, Liu D B, You C, et al. Interfacial characteristic of graded hydroxyapatite and titanium thin film by magnetron sputtering [J]. Surf. Coat. Technol., 2007, 201: 5688
doi: 10.1016/j.surfcoat.2006.07.057
113
Li M, Li L Q, Su K, et al. Highly effective and noninvasive near-infrared eradication of a Staphylococcus aureus biofilm on implants by a photoresponsive coating within 20 min [J]. Adv. Sci., 2019, 6: 1900599
doi: 10.1002/advs.201900599
114
Tan L, Li J, Liu X M, et al. Rapid biofilm eradication on bone implants using red phosphorus and near-infrared light [J]. Adv. Mater., 2018, 30: 1801808
doi: 10.1002/adma.201801808
115
Hosseinabadi H N, Sajjady S A, Amini S. Creating micro textured surfaces for the improvement of surface wettability through ultrasonic vibration assisted turning [J]. Int. J. Adv. Manuf. Technol., 2018, 96: 2825
doi: 10.1007/s00170-018-1580-2
116
Gao X J, Tong W J, Ouyang X P, et al. Facile fabrication of a superhydrophobic titanium surface with mechanical durability by chemical etching [J]. RSC Adv., 2015, 5: 84666
doi: 10.1039/C5RA15293C
117
Hou X M, Wang X B, Zhu Q S, et al. Preparation of polypropylene superhydrophobic surface and its blood compatibility [J]. Colloids Surf., 2010, 80B: 247
118
Tang P F, Zhang W, Wang Y, et al. Effect of superhydrophobic surface of titanium on Staphylococcus aureus adhesion [J]. J. Nanomater., 2011, 2011: 178921
119
Zhang X, Wan Y, Ren B, et al. Preparation of superhydrophobic surface on titanium alloy via micro-milling, anodic oxidation and fluorination [J]. Micromachines, 2020, 11: 316
doi: 10.3390/mi11030316
120
Patiño-Herrera R, González-Alatorre G, Estrada-Baltazar A, et al. Hydrophobic coatings for prevention of dental enamel erosion [J]. Surf. Coat. Technol., 2015, 275: 148
doi: 10.1016/j.surfcoat.2015.05.026
121
Mi G J, Shi D, Wang M, et al. Reducing bacterial infections and biofilm formation using nanoparticles and nanostructured antibacterial surfaces [J]. Adv. Healthc. Mater., 2018, 7: 1800103
doi: 10.1002/adhm.201800103
122
Kingshott P, Wei J, Bagge-Ravn D, et al. Covalent attachment of poly(ethylene glycol) to surfaces, critical for reducing bacterial adhesion [J]. Langmuir, 2003, 19: 6912
doi: 10.1021/la034032m
123
Harris L G, Tosatti S, Wieland M, et al. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(l-lysine)-grafted-poly(ethylene glycol) copolymers [J]. Biomaterials, 2004, 25: 4135
pmid: 15046904
124
Yang F, Williams C G, Wang D A, et al. The effect of incorporating RGD adhesive peptide in polyethylene glycol diacrylate hydrogel on osteogenesis of bone marrow stromal cells [J]. Biomaterials, 2005, 26: 5991
pmid: 15878198
125
Ding X, Yang C, Lim T P, et al. Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers [J]. Biomaterials, 2012, 33: 6593
doi: 10.1016/j.biomaterials.2012.06.001
pmid: 22748920
126
Yang C, Ding X, Ono R J, et al. Brush-like polycarbonates containing dopamine, cations, and PEG providing a broad-spectrum, antibacterial, and antifouling surface via one-step coating [J]. Adv. Mater., 2014, 26: 7346
doi: 10.1002/adma.201402059
127
Li L L, Qi G B, Yu F Q, et al. An adaptive biointerface from self-assembled functional peptides for tissue engineering [J]. Adv. Mater., 2015, 27: 3181
doi: 10.1002/adma.201500658
128
Ivanova E P, Hasan J, Webb H K, et al. Bactericidal activity of black silicon [J]. Nat. Commun., 2013, 4: 2838
doi: 10.1038/ncomms3838
pmid: 24281410
129
Mainwaring D E, Nguyen S H, Webb H, et al. The nature of inherent bactericidal activity: Insights from the nanotopology of three species of dragonfly [J]. Nanoscale, 2016, 8: 6527
doi: 10.1039/c5nr08542j
pmid: 26935293
130
Li J, Tan L, Liu X M, et al. Balancing bacteria-osteoblast competition through selective physical puncture and biofunctionalization of ZnO/polydopamine/arginine-glycine-aspartic acid-cysteine nanorods [J]. ACS Nano, 2017, 11: 11250
doi: 10.1021/acsnano.7b05620
131
Zhong Z X, Xu Z, Sheng T, et al. Unusual air filters with ultrahigh efficiency and antibacterial functionality enabled by ZnO nanorods [J]. ACS Appl. Mater. Interfaces, 2015, 7: 21538
doi: 10.1021/acsami.5b06810
132
Nguyen M N, Lebarbe T, Zouani O F, et al. Impact of RGD nanopatterns grafted onto titanium on osteoblastic cell adhesion [J]. Biomacromolecules, 2012, 13: 896
doi: 10.1021/bm201812u
pmid: 22288777
133
Bellis S L. Advantages of RGD peptides for directing cell association with biomaterials [J]. Biomaterials, 2011, 32: 4205
doi: 10.1016/j.biomaterials.2011.02.029
pmid: 21515168
134
Swartjes J J T M, Das T, Sharifi S, et al. A functional DNase I coating to prevent adhesion of bacteria and the formation of biofilm [J]. Adv. Funct. Mater., 2013, 23: 2843
doi: 10.1002/adfm.201202927
135
Flemming H C, Wingender J. The biofilm matrix [J]. Nat. Rev. Microbiol., 2010, 8: 623
doi: 10.1038/nrmicro2415
136
Arciola C R, Campoccia D, Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion [J]. Nat. Rev. Microbiol., 2018, 16: 397
doi: 10.1038/s41579-018-0019-y
pmid: 29720707
137
Chen Z W, Ji H W, Liu C Q, et al. A multinuclear metal complex based dnase-mimetic artificial enzyme: Matrix cleavage for combating bacterial biofilms [J]. Angew. Chem. Int. Ed., 2016, 55: 10732
doi: 10.1002/anie.201605296
138
Liu Z W, Wang F M, Ren J S, et al. A series of MOF/Ce-based nanozymes with dual enzyme-like activity disrupting biofilms and hindering recolonization of bacteria [J]. Biomaterials, 2019, 208: 21
doi: 10.1016/j.biomaterials.2019.04.007
139
Miller M B, Bassler B L. Quorum sensing in bacteria [J]. Annu. Rev. Microbiol., 2001, 55: 165
pmid: 11544353
140
Waters C M, Bassler B L. Quorum sensing: Cell-to-cell communication in bacteria [J]. Annu. Rev. Cell. Dev. Biol., 2005, 21: 319
doi: 10.1146/annurev.cellbio.21.012704.131001
141
Flickinger S T, Copeland M F, Downes E M, et al. Quorum sensing between Pseudomonas aeruginosa biofilms accelerates cell growth [J]. J. Am. Chem. Soc., 2011, 133: 5966
doi: 10.1021/ja111131f
pmid: 21434644
142
Sun Y H, Qin H S, Yan Z Q, et al. Combating biofilm associated infection in vivo: Integration of quorum sensing inhibition and photodynamic treatment based on multidrug delivered hollow carbon nitride sphere [J]. Adv. Funct. Mater., 2019, 29: 1808222
doi: 10.1002/adfm.201808222
143
Vermote A, Brackman G, Risseeuw M D P, et al. Hamamelitannin analogues that modulate quorum sensing as potentiators of antibiotics against Staphylococcus aureus [J]. Angew. Chem. Int. Ed., 2016, 55: 6551
doi: 10.1002/anie.201601973
pmid: 27095479
144
Ivanova K, Fernandes M M, Mendoza E, et al. Enzyme multilayer coatings inhibit Pseudomonas aeruginosa biofilm formation on urinary catheters [J]. Appl. Microbiol. Biotechnol., 2015, 99: 4373
doi: 10.1007/s00253-015-6378-7
145
Yuan Z, He Y, Lin C C, et al. Antibacterial surface design of biomedical titanium materials for orthopedic applications [J]. J. Mater. Sci. Technol., 2021, 78: 51
doi: 10.1016/j.jmst.2020.10.066
146
Handke L D, Rogers K L, Olson M E, et al. Staphylococcus epidermidissaeR is an effector of anaerobic growth and a mediator of acute inflammation [J]. Infect. Immun., 2008, 76: 141
doi: 10.1128/IAI.00556-07
pmid: 17954724
147
Yang S B, Han X G, Yang Y, et al. Bacteria-targeting nanoparticles with microenvironment-responsive antibiotic release to eliminate intracellular Staphylococcus aureus and associated infection [J]. ACS Appl. Mater. Interfaces, 2018, 10: 14299
doi: 10.1021/acsami.7b15678
148
Chatterjee S S, Joo H S, Duong A C, et al. Essential Staphylococcus aureus toxin export system [J]. Nat. Med., 2013, 19: 364
doi: 10.1038/nm.3047
pmid: 23396209
149
Sutrisno L, Hu Y, Shen X K, et al. Fabrication of hyaluronidase-responsive biocompatible multilayers on BMP2 loaded titanium nanotube for the bacterial infection prevention [J]. Mater. Sci. Eng., 2018, C89: 95
150
Zhuk I, Jariwala F, Attygalle A B, et al. Self-defensive layer-by-layer films with bacteria-triggered antibiotic release [J]. ACS Nano, 2014, 8: 7733
doi: 10.1021/nn500674g
151
Yuan Z, Huang S Z, Lan S X, et al. Surface engineering of titanium implants with enzyme-triggered antibacterial properties and enhanced osseointegration in vivo [J]. J. Mater. Chem., 2018, 6B: 8090
152
Jia Z J, Xiu P, Li M, et al. Bioinspired anchoring AgNPs onto micro-nanoporous TiO2 orthopedic coatings: Trap-killing of bacteria, surface-regulated osteoblast functions and host responses [J]. Biomaterials, 2016, 75: 203
doi: 10.1016/j.biomaterials.2015.10.035
153
Lin X, Yang S F, Lai K, et al. Orthopedic implant biomaterials with both osteogenic and anti-infection capacities and associated in vivo evaluation methods [J]. Nanomed: Nanotechnol. Biol. Med., 2017, 13: 123
doi: 10.1016/j.nano.2016.08.003
154
Afewerki S, Bassous N, Harb S, et al. Advances in dual functional antimicrobial and osteoinductive biomaterials for orthopaedic applications [J]. Nanomed: Nanotechnol., Biol. Med., 2020, 24: 102143
doi: 10.1016/j.nano.2019.102143
155
Wang Z M, Wang K F, Lu X, et al. Nanostructured architectures by assembling polysaccharide-coated BSA nanoparticles for biomedical application [J]. Adv. Healthc. Mater., 2015, 4: 927
doi: 10.1002/adhm.201400684
156
Min J, Choi K Y, Dreaden E C, et al. Designer dual therapy nanolayered implant coatings eradicate biofilms and accelerate bone tissue repair [J]. ACS Nano, 2016, 10: 4441
doi: 10.1021/acsnano.6b00087
157
Verlee A, Mincke S, Stevens C V. Recent developments in antibacterial and antifungal chitosan and its derivatives [J]. Carbohydr. Polym., 2017, 164: 268
doi: 10.1016/j.carbpol.2017.02.001
158
Chua P H, Neoh K G, Kang E T, et al. Surface functionalization of titanium with hyaluronic acid/chitosan polyelectrolyte multilayers and RGD for promoting osteoblast functions and inhibiting bacterial adhesion [J]. Biomaterials, 2008, 29: 1412
doi: 10.1016/j.biomaterials.2007.12.019
159
Ordikhani F, Tamjid E, Simchi A. Characterization and antibacterial performance of electrodeposited chitosan-vancomycin composite coatings for prevention of implant-associated infections [J]. Mater. Sci. Eng., 2014, C41: 240
160
Lin J, Qiu S Y, Lewis K, et al. Mechanism of bactericidal and fungicidal activities of textiles covalently modified with alkylated polyethylenimine [J]. Biotechnol. Bioeng., 2003, 83: 168
doi: 10.1002/bit.10651
161
Atar-Froyman L, Sharon A, Weiss E I, et al. Anti-biofilm properties of wound dressing incorporating nonrelease polycationic antimicrobials [J]. Biomaterials, 2015, 46: 141
doi: 10.1016/j.biomaterials.2014.12.047
pmid: 25678123
162
Asri L A T W, Crismaru M, Roest S, et al. A shape-adaptive, antibacterial-coating of immobilized quaternary-ammonium compounds tethered on hyperbranched polyurea and its mechanism of action [J]. Adv. Funct. Mater., 2014, 24: 346
doi: 10.1002/adfm.201301686
163
Wei T, Zhan W J, Yu Q, et al. Smart biointerface with photoswitched functions between bactericidal activity and bacteria-releasing ability [J]. ACS Appl. Mater. Interfaces, 2017, 9: 25767
doi: 10.1021/acsami.7b06483
164
Zasloff M. Antimicrobial peptides of multicellular organisms [J]. Nature, 2002, 415: 389
doi: 10.1038/415389a
165
Reddy K V R, Yedery R D, Aranha C. Antimicrobial peptides: Premises and promises [J]. Int. J. Antimicrob. Agents, 2004, 24: 536
doi: 10.1016/j.ijantimicag.2004.09.005
166
Brogden K A. Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria? [J]. Nat. Rev. Microbiol., 2005, 3: 238
doi: 10.1038/nrmicro1098
pmid: 15703760
167
Campoccia D, Montanaro L, Arciola C R. A review of the biomaterials technologies for infection-resistant surfaces [J]. Biomaterials, 2013, 34: 8533
doi: 10.1016/j.biomaterials.2013.07.089
pmid: 23953781
168
Mellier C, Fayon F, Boukhechba F, et al. Design and properties of novel gallium-doped injectable apatitic cements [J]. Acta Biomater., 2015, 24: 322
doi: 10.1016/j.actbio.2015.05.027
169
Mei S L, Wang H Y, Wang W, et al. Antibacterial effects and biocompatibility of titanium surfaces with graded silver incorporation in titania nanotubes [J]. Biomaterials, 2014, 35: 4255
doi: 10.1016/j.biomaterials.2014.02.005
170
Zhang L, Gao Q, Han Y. Zn and Ag co-doped anti-microbial TiO2 coatings on Ti by micro-arc oxidation [J]. J. Mater. Sci. Technol., 2016, 32: 919
doi: 10.1016/j.jmst.2016.01.008
171
Sedelnikova M B, Komarova E G, Sharkeev Y P, et al. Modification of titanium surface via Ag-, Sr- and Si-containing micro-arc calcium phosphate coating [J]. Bioact. Mater., 2019, 4: 224
doi: 10.1016/j.bioactmat.2019.07.001
pmid: 31406950
172
Roknian M, Fattah-alhosseini A, Gashti S O, et al. Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: Microstructural analysis, antibacterial effect and corrosion behavior of coatings in ringer's physiological solution [J]. J. Alloys Compd., 2018, 740: 330
doi: 10.1016/j.jallcom.2017.12.366
173
Liu W W, Su P L, Chen S, et al. Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility [J]. Nanoscale, 2014, 6: 9050
doi: 10.1039/C4NR01531B
174
Maimaiti B, Zhang N Y, Yan L, et al. Stable ZnO-doped hydroxyapatite nanocoating for anti-infection and osteogenic on titanium [J]. Colloids Surf., 2020, 186B: 110731
175
Ma Z, Ren L, Shahzad M B, et al. Hot deformation behavior of Cu-bearing antibacterial titanium alloy [J]. J. Mater. Sci. Technol., 2018, 34: 1867
doi: 10.1016/j.jmst.2017.12.015
176
Liu H, Liu R, Ullah I, et al. Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity [J]. J. Mater. Sci. Technol., 2020, 48: 130
doi: 10.1016/j.jmst.2019.12.019
177
Liu R, Tang Y L, Liu H, et al. Effects of combined chemical design (Cu addition) and topographical modification (SLA) of Ti-Cu/SLA for promoting osteogenic, angiogenic and antibacterial activities [J]. J. Mater. Sci. Technol., 2020, 47: 202
doi: 10.1016/j.jmst.2019.10.045
178
Agarwal A, Weis T L, Schurr M J, et al. Surfaces modified with nanometer-thick silver-impregnated polymeric films that kill bacteria but support growth of mammalian cells [J]. Biomaterials, 2010, 31: 680
doi: 10.1016/j.biomaterials.2009.09.092
pmid: 19864019
179
Cheng H, Xiong W, Fang Z, et al. Strontium (Sr) and silver (Ag) loaded nanotubular structures with combined osteoinductive and antimicrobial activities [J]. Acta Biomater., 2016, 31: 388
doi: S1742-7061(15)30222-1
pmid: 26612413
180
Tîlmaciu C M, Mathieu M, Lavigne J P, et al. In vitro and in vivo characterization of antibacterial activity and biocompatibility: A study on silver-containing phosphonate monolayers on titanium [J]. Acta Biomater., 2015, 15: 266
doi: 10.1016/j.actbio.2014.12.020
181
van Hengel I A J, Putra N E, Tierolf M W A M, et al. Biofunctionalization of selective laser melted porous titanium using silver and zinc nanoparticles to prevent infections by antibiotic-resistant bacteria [J]. Acta Biomater., 2020, 107: 325
doi: S1742-7061(20)30132-X
pmid: 32145392
182
Shen X K, Hu Y, Xu G Q, et al. Regulation of the biological functions of osteoblasts and bone formation by Zn-incorporated coating on microrough titanium [J]. ACS Appl. Mater. Interfaces, 2014, 6: 16426
doi: 10.1021/am5049338
183
Jin G D, Cao H L, Qiao Y Q, et al. Osteogenic activity and antibacterial effect of zinc ion implanted titanium [J]. Colloids Surf., 2014, 117B: 158
184
Huo K F, Zhang X M, Wang H R, et al. Osteogenic activity and antibacterial effects on titanium surfaces modified with Zn-incorporated nanotube arrays [J]. Biomaterials, 2013, 34: 3467
doi: 10.1016/j.biomaterials.2013.01.071
185
Liu P, Zhao Y C, Yuan Z, et al. Construction of Zn-incorporated multilayer films to promote osteoblasts growth and reduce bacterial adhesion [J]. Mater. Sci. Eng., 2017, C75: 998
186
Wu M C, Deokar A R, Liao J H, et al. Graphene-based photothermal agent for rapid and effective killing of bacteria [J]. ACS Nano, 2013, 7: 1281
doi: 10.1021/nn304782d
187
Wang C, Wang Y L, Zhang L L, et al. Pretreated macrophage-membrane-coated gold nanocages for precise drug delivery for treatment of bacterial infections [J]. Adv. Mater., 2018, 30: 1804023
doi: 10.1002/adma.201804023
188
Qiao Y, Ping Y, Zhang H B, et al. Laser-activatable CuS nanodots to treat multidrug-resistant bacteria and release copper ion to accelerate healing of infected chronic nonhealing wounds [J]. ACS Appl. Mater. Interfaces, 2019, 11: 3809
doi: 10.1021/acsami.8b21766
189
Yin W Y, Yu J, Lv F T, et al. Functionalized nano-MoS2 with peroxidase catalytic and near-infrared photothermal activities for safe and synergetic wound antibacterial applications [J]. ACS Nano, 2016, 10: 11000
doi: 10.1021/acsnano.6b05810
190
Cheng W, Zeng X W, Chen H Z, et al. Versatile polydopamine platforms: Synthesis and promising applications for surface modification and advanced nanomedicine [J]. ACS Nano, 2019, 13: 8537
doi: 10.1021/acsnano.9b04436
pmid: 31369230
191
Lei W X, Ren K F, Chen T T, et al. Polydopamine nanocoating for effective photothermal killing of bacteria and fungus upon near-infrared irradiation [J]. Adv. Mater. Interfaces, 2016, 3: 1600767
doi: 10.1002/admi.201600767
192
Yuan Z, Tao B L, He Y, et al. Biocompatible MoS2/PDA-RGD coating on titanium implant with antibacterial property via intrinsic ROS-independent oxidative stress and NIR irradiation [J]. Biomaterials, 2019, 217: 119290
doi: 10.1016/j.biomaterials.2019.119290
193
Xie X Z, Mao C Y, Liu X M, et al. Synergistic bacteria killing through photodynamic and physical actions of graphene oxide/Ag/collagen coating [J]. ACS Appl. Mater. Interfaces, 2017, 9: 26417
doi: 10.1021/acsami.7b06702
194
Wang D, Niu L J, Qiao Z Y, et al. Synthesis of self-assembled porphyrin nanoparticle photosensitizers [J]. ACS Nano, 2018, 12: 3796
doi: 10.1021/acsnano.8b01010
195
Zhu Y W, Xu C, Zhang N, et al. Polycationic synergistic antibacterial agents with multiple functional components for efficient anti-infective therapy [J]. Adv. Funct. Mater., 2018, 28: 1706709
doi: 10.1002/adfm.201706709
196
Deng Q Q, Sun P P, Zhang L, et al. Porphyrin MOF dots-based, function-adaptive nanoplatform for enhanced penetration and photodynamic eradication of bacterial biofilms [J]. Adv. Funct. Mater., 2019, 29: 1903018
doi: 10.1002/adfm.201903018
197
Su K, Tan L, Liu X M, et al. Rapid photo-sonotherapy for clinical treatment of bacterial infected bone implants by creating oxygen deficiency using sulfur doping [J]. ACS Nano, 2020, 14: 2077
doi: 10.1021/acsnano.9b08686
198
Feng Z Z, Liu X M, Tan L, et al. Electrophoretic deposited stable chitosan@MoS2 coating with rapid in situ bacteria-killing ability under dual-light irradiation [J]. Small, 2018, 14: 1704347
doi: 10.1002/smll.201704347
199
Yuan Z, Tao B L, He Y, et al. Remote eradication of biofilm on titanium implant via near-infrared light triggered photothermal/photodynamic therapy strategy [J]. Biomaterials, 2019, 223: 119479
doi: 10.1016/j.biomaterials.2019.119479