Please wait a minute...
Acta Metall Sin  2022, Vol. 58 Issue (7): 911-920    DOI: 10.11900/0412.1961.2021.00225
Research paper Current Issue | Archive | Adv Search |
Strain-Engineered Semiconductor to Semimetallic Transition and Its Mechanism in Bi(111) Film
REN Shihao1, LIU Yongli1(), MENG Fanshun2, QI Yang1
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
2.School of Science, Liaoning University of Technology, Jinzhou 121001, China
Cite this article: 

REN Shihao, LIU Yongli, MENG Fanshun, QI Yang. Strain-Engineered Semiconductor to Semimetallic Transition and Its Mechanism in Bi(111) Film. Acta Metall Sin, 2022, 58(7): 911-920.

Download:  HTML  PDF(2081KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Bi is a key semimetallic element with strong spin-orbit coupling characteristics, long Fermi wavelengths, quantum size effects, and competitive structural phases. Its spin-orbit coupling can induce the metal surface state of Bi thin film, which is completely different from its bulk properties, indicating that thin Bi film has important research significance in the control of the transmission performance of semiconductor sensors. The biaxial strain deformation and film thickness can induce the transition from semiconductors to semimetals and changes in topological properties. However, the current critical transition thickness obtained using different methods is contentious, and the inherent transition mechanism remains unclear. In this work, the effect and affecting mechanism of biaxial strain on the geometric and band structures of Bi thin films with different thicknesses of Bi thin films were systematically studied and discussed using a first-principles method based on density functional theories. The results show that the band and geometric structures of Bi(111) films are strongly correlated to the thickness. With the increase in the number of atomic layers, the lattice constant increases, the buckling height decreases, the surface energy increases, and the energy bandgap decreases, where a transition of the films from semiconductor to semimetal occurs at the critical thickness of three bilayers (BLs). The application of tensile strain to the one-BL Bi film can induce the transition of energy bandgap from indirect to direct semiconductor accompanied with a band inversion, whereas the compressive strain can induce the transition from semiconductor to semimetal. The analysis of the bond nature of the near-band-edge electronic orbitals revealed that the transition of the semiconductor to the semimetallic state originates from the transition of the conduction band minimum induced by the different response rates of the bonding and antibonding states of the band edge electrons to the strain. A similar transition can be observed for 2-5 Bi BL films under biaxial deformation. The strain deformation can also improve the transport property of Bi films by changing the effective mass of electrons and holes. These findings provide a theoretical insight to regulating the electronic properties of Bi film integrated electronic devices using the strain field.

Key words:  Bi film      strain      energy band structure      first-principle method     
Received:  26 May 2021     
ZTFLH:  O484.4  
Fund: National Natural Science Foundation of China(61971116)
About author:  LIU Yongli, associate professor, Tel: (024)83678479, Email: ylliu@imp.neu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00225     OR     https://www.ams.org.cn/EN/Y2022/V58/I7/911

Fig.1  Hexagonal crystal structure (a, b, and c are lattice constants, a = b) (a), top and side views of 2 bilayers (BLs) atomic structure together (b), the optimized surface unit cell parameter as a function of the number of Bi BLs and experimental data[6] (c), the variation of intra-BL (d1) and inter-BL (d2) distances, as a function of the number of BLs (d), and calculated surface energy for free-standing Bi(111) films as a function of the number of BLs (e)
Fig.2  Band structures of 1-5 BL thickness Bi(111) film (a-e), direct and indirect energy band gap curves as a function of the film thickness (f) (E—energy, Ef—Fermi energy)
Fig.3  Variations of total energy (a), bond length and equilibrium buckling (b) of 1 BL thickness Bi(111) film with different strains
Fig.4  Electronic band structures of 1 BL thickness Bi(111) film with different strains
Fig.5  Variations of direct and indirect energy band gaps of 1 BL thickness Bi(111) film with different strains
Fig.6  Variations of ECBM and EVBM as a function of strain (a), and local charge density at CB-Γ and VB-Γ (strain ε = 4% and 8%) (b) of 1 BL thickness Bi(111) film (CBM—conduction band minimum, VBM—valence band maximum, ECBM—energy for the CBM, EVBM—energy for the VBM, CB-Γ—conduction band at Γ, VB-Γ—valence band at Γ)
Fig.7  Variations of ECB-Γ and ECB-V as a function of strain (a), and local charge density at CB-Γ and CB-V (b) of 1 BL thickness Bi(111) film (CB-Γ—conduction band at Γ,CB-V—conduction band at V, ECB-Γ —energy for the CB-Γ, ECB-V —energy for the CB-V)
Fig.8  Variations of effective masses of the electron and hole as a function of strain of 1 BL thickness Bi(111) film (me—electronic quality)
Fig.9  Variations of electronic band structures (a) and direct/indirect energy band gaps (b) change as a function of the strain for 2 BL thickness Bi(111) film
Fig.10  Variations of energy band gap as a function strain for the Bi(111) films with thickness of 3 BL, 4 BL, and 5 BL
1 Qi X L, Zhang S C. Topological insulators and superconductors [J]. Rev. Mod. Phys., 2011, 83: 1057
doi: 10.1103/RevModPhys.83.1057
2 Hasan M Z, Kane C L. Colloquium: Topological insulators [J]. Rev. Mod. Phys., 2010, 82: 3045
doi: 10.1103/RevModPhys.82.3045
3 Koroteev Y M, Bihlmayer G, Chulkov E V, et al. First-principles investigation of structural and electronic properties of ultrathin Bi films [J]. Phys. Rev., 2008, 77B: 045428
4 Dong C H, Liu Y L, Qi Y. Effect of thickness on the surface and electronic properties of Bi film [J]. Acta Metall. Sin., 2018, 54: 935
董彩虹, 刘永利, 祁 阳. 厚度对Bi薄膜表面特性和电学性质的影响 [J]. 金属学报, 2018, 54: 935
doi: 10.11900/0412.1961.2017.00422
5 Wang N, Dai Y X, Wang T L, et al. Investigation of growth characteristics and semimetal-semiconductor transition of polycrystalline bismuth thin films [J]. IUCrJ, 2020, 7: 49
doi: 10.1107/S2052252519015458 pmid: 31949904
6 Yao M Y, Zhu F F, Han C Q, et al. Topologically nontrivial bismuth(111) thin films [J]. Sci. Rep., 2016, 6: 21326
doi: 10.1038/srep21326
7 Yaginuma S, Nagao T, Sadowski J T, et al. Origin of flat morphology and high crystallinity of ultrathin bismuth films [J]. Surf. Sci., 2007, 601: 3593
doi: 10.1016/j.susc.2007.06.075
8 Hatta S, Ohtsubo Y, Miyamoto S, et al. Epitaxial growth of Bi thin films on Ge(111) [J]. Appl. Surf. Sci., 2009, 256: 1252
doi: 10.1016/j.apsusc.2009.05.079
9 Ast C R, Höchst H. Electronic structure of a bismuth bilayer [J]. Phys. Rev., 2003, 67B: 113102
10 Hirahara T, Nagao T, Matsuda I, et al. Role of spin-orbit coupling and hybridization effects in the electronic structure of ultrathin Bi films [J]. Phys. Rev. Lett., 2006, 97: 146803
doi: 10.1103/PhysRevLett.97.146803
11 Takayama A, Sato T, Souma S, et al. Tunable spin polarization in bismuth ultrathin film on Si(111) [J]. Nano Lett., 2012, 12: 1776
doi: 10.1021/nl2035018 pmid: 22448971
12 Ast C R, Höchst H. Fermi surface of Bi(111) measured by photoemission spectroscopy [J]. Phys. Rev. Lett., 2001, 87: 177602
doi: 10.1103/PhysRevLett.87.177602
13 Xiao S H, Wei D H, Jin X F. Bi(111) thin film with insulating interior but metallic surfaces [J]. Phys. Rev. Lett., 2012, 109: 166805
doi: 10.1103/PhysRevLett.109.166805
14 Hoffman C A, Meyer J R, Bartoli F J, et al. Semimetal-to-semiconductor transition in bismuth thin films [J]. Phys. Rev., 1993, 48B: 11431
15 Liu Z, Liu C X, Wu Y S, et al. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study [J]. Phys. Rev. Lett., 2011, 107: 136805
doi: 10.1103/PhysRevLett.107.136805
16 Wang D C, Chen L, Liu H M, et al. Electronic structures and topological properties of Bi(111) ultrathin films [J]. J. Phys. Soc. Jpn., 2013, 82: 094712
17 Falvo M R, Clary G J, Taylor II R M, et al. Bending and buckling of carbon nanotubes under large strain [J]. Nature, 1997, 389: 582
doi: 10.1038/39282
18 Cai Y Q, Zhang A H, Feng Y P, et al. Strain effects on work functions of pristine and potassium-decorated carbon nanotubes [J]. J. Chem. Phys., 2009, 131: 224701
doi: 10.1063/1.3267473
19 Hirahara T, Fukui N, Shirasawa T, et al. Atomic and electronic structure of ultrathin Bi(111) films grown on Bi2Te3(111) substrates: Eevidence for a strain-induced topological phase transition [J]. Phys. Rev. Lett., 2012, 109: 227401
doi: 10.1103/PhysRevLett.109.227401
20 Wang Z F, Yao M Y, Ming W M, et al. Creation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions [J]. Nat. Commun., 2013, 4: 1384
doi: 10.1038/ncomms2387 pmid: 23340424
21 Miao L, Wang Z F, Ming W M, et al. Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators [J]. Proc. Natl. Acad. Sci. USA, 2013, 110: 2758
doi: 10.1073/pnas.1218104110
22 Chen L, Wang Z F, Liu F. Robustness of two-dimensional topological insulator states in bilayer bismuth against strain and electrical field [J]. Phys. Rev., 2013, 87B: 235420
23 Huang Z Q, Hsu C H, Chuang F C, et al. Strain driven topological phase transitions in atomically thin films of group IV and V elements in the honeycomb structures [J]. New J. Phys., 2014, 16: 105018
doi: 10.1088/1367-2630/16/10/105018
24 Wang X X, Xu C Z, Hu H Z, et al. Topological phase stability and transformation of bismuthene [J]. EPL, 2017, 119: 27002
doi: 10.1209/0295-5075/119/27002
25 Peng X H, Copple A. Origination of the direct-indirect band gap transition in strained wurtzite and zinc-blende GaAs nanowires: A first principles study [J]. Phys. Rev., 2013, 87B: 115308
26 Copple A, Ralston N, Peng X H. Engineering direct-indirect band gap transition in wurtzite GaAs nanowires through size and uniaxial strain [J]. Appl. Phys. Lett., 2012, 100: 193108
doi: 10.1063/1.4718026
27 Peng X H, Velasquez S. Strain modulated band gap of edge passivated armchair graphene nanoribbons [J]. Appl. Phys. Lett., 2011, 98: 023112
28 Peng X H, Wei Q, Copple A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene [J]. Phys. Rev., 2014, 90B: 085402
29 Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
doi: 10.1016/0927-0256(96)00008-0
30 Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev., 1999, 59B: 1758
31 Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328
32 Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
33 Nagao T, Sadowski J T, Saito M, et al. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7 × 7 [J]. Phys. Rev. Lett., 2004, 93: 105501
doi: 10.1103/PhysRevLett.93.105501
34 Mönig H, Sun J, Koroteev Y M, et al. Structure of the (111) surface of bismuth: LEED analysis and first-principles calculations [J]. Phys. Rev., 2005, 72B: 085410
35 Sholl D S, Steckel J A. Density Functional Theory: A Practical Introduction [M]. New Jersey: John Wiley & Sons Inc, 2009: 96
36 Wang J F. Solid State Physics Course [M]. 6th Ed., Jinan: Shandong University Press, 2008: 171
王矜奉. 固体物理教程 [M]. 第六版, 济南: 山东大学出版社, 2008: 171
[1] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[2] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[3] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[4] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[5] LIU Xuxi, LIU Wenbo, LI Boyan, HE Xinfu, YANG Zhaoxi, YUN Di. Calculation of Critical Nucleus Size and Minimum Energy Path of Cu-Riched Precipitates During Radiation in Fe-Cu Alloy Using String Method[J]. 金属学报, 2022, 58(7): 943-955.
[6] WU Jin, YANG Jie, CHEN Haofeng. Fracture Behavior of DMWJ Under Different Constraints Considering Residual Stress[J]. 金属学报, 2022, 58(7): 956-964.
[7] GAO Yubi, DING Yutian, LI Haifeng, DONG Hongbiao, ZHANG Ruiyao, LI Jun, LUO Quanshun. Effect of Deformation Rate on the Elastic-Plastic Deformation Behavior of GH3625 Alloy[J]. 金属学报, 2022, 58(5): 695-708.
[8] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[9] GUO Xiangru, SHEN Junjie. Modelling of the Plastic Behavior of Cu Crystal with Twinning-Induced Softening and Strengthening Effects[J]. 金属学报, 2022, 58(3): 375-384.
[10] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[11] GUO Haohan, YANG Jie, LIU Fang, LU Rongsheng. Constraint Related Fatigue Crack Initiation Life of GH4169 Superalloy[J]. 金属学报, 2022, 58(12): 1633-1644.
[12] ZHAO Yonghao, MAO Qingzhong. Toughening of Nanostructured Metals[J]. 金属学报, 2022, 58(11): 1385-1398.
[13] FAN Guohua, MIAO Kesong, LI Danyang, XIA Yiping, WU Hao. Unraveling the Strength-Ductility Synergy of Heterostructured Metallic Materials from the Perspective of Local Stress/Strain[J]. 金属学报, 2022, 58(11): 1427-1440.
[14] WU Xiaolei, ZHU Yuntian. Heterostructured Metallic Materials: Plastic Deformation and Strain Hardening[J]. 金属学报, 2022, 58(11): 1349-1359.
[15] PAN Qingsong, CUI Fang, TAO Nairong, LU Lei. Strain-Controlled Fatigue Behavior of Nanotwin- Strengthened 304 Austenitic Stainless Steel[J]. 金属学报, 2022, 58(1): 45-53.
No Suggested Reading articles found!