|
|
Strain-Engineered Semiconductor to Semimetallic Transition and Its Mechanism in Bi(111) Film |
REN Shihao1, LIU Yongli1( ), MENG Fanshun2, QI Yang1 |
1.School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China 2.School of Science, Liaoning University of Technology, Jinzhou 121001, China |
|
Cite this article:
REN Shihao, LIU Yongli, MENG Fanshun, QI Yang. Strain-Engineered Semiconductor to Semimetallic Transition and Its Mechanism in Bi(111) Film. Acta Metall Sin, 2022, 58(7): 911-920.
|
Abstract Bi is a key semimetallic element with strong spin-orbit coupling characteristics, long Fermi wavelengths, quantum size effects, and competitive structural phases. Its spin-orbit coupling can induce the metal surface state of Bi thin film, which is completely different from its bulk properties, indicating that thin Bi film has important research significance in the control of the transmission performance of semiconductor sensors. The biaxial strain deformation and film thickness can induce the transition from semiconductors to semimetals and changes in topological properties. However, the current critical transition thickness obtained using different methods is contentious, and the inherent transition mechanism remains unclear. In this work, the effect and affecting mechanism of biaxial strain on the geometric and band structures of Bi thin films with different thicknesses of Bi thin films were systematically studied and discussed using a first-principles method based on density functional theories. The results show that the band and geometric structures of Bi(111) films are strongly correlated to the thickness. With the increase in the number of atomic layers, the lattice constant increases, the buckling height decreases, the surface energy increases, and the energy bandgap decreases, where a transition of the films from semiconductor to semimetal occurs at the critical thickness of three bilayers (BLs). The application of tensile strain to the one-BL Bi film can induce the transition of energy bandgap from indirect to direct semiconductor accompanied with a band inversion, whereas the compressive strain can induce the transition from semiconductor to semimetal. The analysis of the bond nature of the near-band-edge electronic orbitals revealed that the transition of the semiconductor to the semimetallic state originates from the transition of the conduction band minimum induced by the different response rates of the bonding and antibonding states of the band edge electrons to the strain. A similar transition can be observed for 2-5 Bi BL films under biaxial deformation. The strain deformation can also improve the transport property of Bi films by changing the effective mass of electrons and holes. These findings provide a theoretical insight to regulating the electronic properties of Bi film integrated electronic devices using the strain field.
|
Received: 26 May 2021
|
|
Fund: National Natural Science Foundation of China(61971116) |
About author: LIU Yongli, associate professor, Tel: (024)83678479, Email: ylliu@imp.neu.edu.cn
|
1 |
Qi X L, Zhang S C. Topological insulators and superconductors [J]. Rev. Mod. Phys., 2011, 83: 1057
doi: 10.1103/RevModPhys.83.1057
|
2 |
Hasan M Z, Kane C L. Colloquium: Topological insulators [J]. Rev. Mod. Phys., 2010, 82: 3045
doi: 10.1103/RevModPhys.82.3045
|
3 |
Koroteev Y M, Bihlmayer G, Chulkov E V, et al. First-principles investigation of structural and electronic properties of ultrathin Bi films [J]. Phys. Rev., 2008, 77B: 045428
|
4 |
Dong C H, Liu Y L, Qi Y. Effect of thickness on the surface and electronic properties of Bi film [J]. Acta Metall. Sin., 2018, 54: 935
|
|
董彩虹, 刘永利, 祁 阳. 厚度对Bi薄膜表面特性和电学性质的影响 [J]. 金属学报, 2018, 54: 935
doi: 10.11900/0412.1961.2017.00422
|
5 |
Wang N, Dai Y X, Wang T L, et al. Investigation of growth characteristics and semimetal-semiconductor transition of polycrystalline bismuth thin films [J]. IUCrJ, 2020, 7: 49
doi: 10.1107/S2052252519015458
pmid: 31949904
|
6 |
Yao M Y, Zhu F F, Han C Q, et al. Topologically nontrivial bismuth(111) thin films [J]. Sci. Rep., 2016, 6: 21326
doi: 10.1038/srep21326
|
7 |
Yaginuma S, Nagao T, Sadowski J T, et al. Origin of flat morphology and high crystallinity of ultrathin bismuth films [J]. Surf. Sci., 2007, 601: 3593
doi: 10.1016/j.susc.2007.06.075
|
8 |
Hatta S, Ohtsubo Y, Miyamoto S, et al. Epitaxial growth of Bi thin films on Ge(111) [J]. Appl. Surf. Sci., 2009, 256: 1252
doi: 10.1016/j.apsusc.2009.05.079
|
9 |
Ast C R, Höchst H. Electronic structure of a bismuth bilayer [J]. Phys. Rev., 2003, 67B: 113102
|
10 |
Hirahara T, Nagao T, Matsuda I, et al. Role of spin-orbit coupling and hybridization effects in the electronic structure of ultrathin Bi films [J]. Phys. Rev. Lett., 2006, 97: 146803
doi: 10.1103/PhysRevLett.97.146803
|
11 |
Takayama A, Sato T, Souma S, et al. Tunable spin polarization in bismuth ultrathin film on Si(111) [J]. Nano Lett., 2012, 12: 1776
doi: 10.1021/nl2035018
pmid: 22448971
|
12 |
Ast C R, Höchst H. Fermi surface of Bi(111) measured by photoemission spectroscopy [J]. Phys. Rev. Lett., 2001, 87: 177602
doi: 10.1103/PhysRevLett.87.177602
|
13 |
Xiao S H, Wei D H, Jin X F. Bi(111) thin film with insulating interior but metallic surfaces [J]. Phys. Rev. Lett., 2012, 109: 166805
doi: 10.1103/PhysRevLett.109.166805
|
14 |
Hoffman C A, Meyer J R, Bartoli F J, et al. Semimetal-to-semiconductor transition in bismuth thin films [J]. Phys. Rev., 1993, 48B: 11431
|
15 |
Liu Z, Liu C X, Wu Y S, et al. Stable nontrivial Z2 topology in ultrathin Bi (111) films: A first-principles study [J]. Phys. Rev. Lett., 2011, 107: 136805
doi: 10.1103/PhysRevLett.107.136805
|
16 |
Wang D C, Chen L, Liu H M, et al. Electronic structures and topological properties of Bi(111) ultrathin films [J]. J. Phys. Soc. Jpn., 2013, 82: 094712
|
17 |
Falvo M R, Clary G J, Taylor II R M, et al. Bending and buckling of carbon nanotubes under large strain [J]. Nature, 1997, 389: 582
doi: 10.1038/39282
|
18 |
Cai Y Q, Zhang A H, Feng Y P, et al. Strain effects on work functions of pristine and potassium-decorated carbon nanotubes [J]. J. Chem. Phys., 2009, 131: 224701
doi: 10.1063/1.3267473
|
19 |
Hirahara T, Fukui N, Shirasawa T, et al. Atomic and electronic structure of ultrathin Bi(111) films grown on Bi2Te3(111) substrates: Eevidence for a strain-induced topological phase transition [J]. Phys. Rev. Lett., 2012, 109: 227401
doi: 10.1103/PhysRevLett.109.227401
|
20 |
Wang Z F, Yao M Y, Ming W M, et al. Creation of helical Dirac fermions by interfacing two gapped systems of ordinary fermions [J]. Nat. Commun., 2013, 4: 1384
doi: 10.1038/ncomms2387
pmid: 23340424
|
21 |
Miao L, Wang Z F, Ming W M, et al. Quasiparticle dynamics in reshaped helical Dirac cone of topological insulators [J]. Proc. Natl. Acad. Sci. USA, 2013, 110: 2758
doi: 10.1073/pnas.1218104110
|
22 |
Chen L, Wang Z F, Liu F. Robustness of two-dimensional topological insulator states in bilayer bismuth against strain and electrical field [J]. Phys. Rev., 2013, 87B: 235420
|
23 |
Huang Z Q, Hsu C H, Chuang F C, et al. Strain driven topological phase transitions in atomically thin films of group IV and V elements in the honeycomb structures [J]. New J. Phys., 2014, 16: 105018
doi: 10.1088/1367-2630/16/10/105018
|
24 |
Wang X X, Xu C Z, Hu H Z, et al. Topological phase stability and transformation of bismuthene [J]. EPL, 2017, 119: 27002
doi: 10.1209/0295-5075/119/27002
|
25 |
Peng X H, Copple A. Origination of the direct-indirect band gap transition in strained wurtzite and zinc-blende GaAs nanowires: A first principles study [J]. Phys. Rev., 2013, 87B: 115308
|
26 |
Copple A, Ralston N, Peng X H. Engineering direct-indirect band gap transition in wurtzite GaAs nanowires through size and uniaxial strain [J]. Appl. Phys. Lett., 2012, 100: 193108
doi: 10.1063/1.4718026
|
27 |
Peng X H, Velasquez S. Strain modulated band gap of edge passivated armchair graphene nanoribbons [J]. Appl. Phys. Lett., 2011, 98: 023112
|
28 |
Peng X H, Wei Q, Copple A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene [J]. Phys. Rev., 2014, 90B: 085402
|
29 |
Kresse G, Furthmuller J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Comput. Mater. Sci., 1996, 6: 15
doi: 10.1016/0927-0256(96)00008-0
|
30 |
Kresse G, Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Phys. Rev., 1999, 59B: 1758
|
31 |
Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys. Rev. Lett., 1996, 77: 3865
doi: 10.1103/PhysRevLett.77.3865
pmid: 10062328
|
32 |
Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations [J]. Phys. Rev., 1976, 13B: 5188
|
33 |
Nagao T, Sadowski J T, Saito M, et al. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7 × 7 [J]. Phys. Rev. Lett., 2004, 93: 105501
doi: 10.1103/PhysRevLett.93.105501
|
34 |
Mönig H, Sun J, Koroteev Y M, et al. Structure of the (111) surface of bismuth: LEED analysis and first-principles calculations [J]. Phys. Rev., 2005, 72B: 085410
|
35 |
Sholl D S, Steckel J A. Density Functional Theory: A Practical Introduction [M]. New Jersey: John Wiley & Sons Inc, 2009: 96
|
36 |
Wang J F. Solid State Physics Course [M]. 6th Ed., Jinan: Shandong University Press, 2008: 171
|
|
王矜奉. 固体物理教程 [M]. 第六版, 济南: 山东大学出版社, 2008: 171
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|