Please wait a minute...
Acta Metall Sin  2021, Vol. 57 Issue (9): 1107-1125    DOI: 10.11900/0412.1961.2021.00051
Overview Current Issue | Archive | Adv Search |
Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection
ZHAO Yuhong1(), JING Jianhui1, CHEN Liwen1, XU Fanghong2, HOU Hua1
1.School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
2.State Key Laboratory of Advanced Stainless Steel Materials, Taiyuan Iron and Steel (Group) Co. Ltd. , Taiyuan 030003, China
Cite this article: 

ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection. Acta Metall Sin, 2021, 57(9): 1107-1125.

Download:  HTML  PDF(3677KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A composite material with a laminated structure can be fabricated through layer-by-layer stacking of ceramic and metal in a certain order. It has characteristics of high strength, high hardness, low density of ceramics, and strong ductility of metals; thus, it can be used for bulletproof armor materials. During bullet antipenetration, the ceramic panel is responsible for decelerating and breaking the projectile, and the metal backplate absorbs the kinetic energy of the bullet through plastic deformation, thereby forming a complete bulletproof armor system. However, there are some problems associated with laminated materials, such as the significant difference between the properties of ceramic and metal, weak interface bonding strength, and easy occurrence of tip cracks due to the increase in the internal stress of the impacted material. The ceramic-metal interface easily leads to a sudden change in material properties, and crack propagation and migration affect the properties. After being impacted, cracks first appear in the interlayer, where the interface bonding strength is still unideal, easily leading to a drop between the ceramic panel and metal backplate. In this study, the preparation and observation of interface structure, phase-field simulation of interface fracture, finite element simulation of interface impact resistance, meshless smoothed-particle hydrodynamic method for high-velocity impact and large deformation, and first-principles calculations of interface strength were reviewed. Finally, some suggestions are presented for future development: (1) Strengthening the research of ceramic toughening to enhance the matching degree between the ceramic panel and metal backplate, reducing the sudden change of ceramic to metal performance, and making the performance of ceramic-metal laminated materials more uniform is crucial. In addition, studying metal strengthening is necessary. On the premise of not damaging metal ductility, nano-phases can be added to prepare metal matrix composites for metal strengthening; (2) More multiscale research methods, such as phase-field method, finite element analysis, and first-principles calculations are needed, especially focusing on how to organically and effectively combine these methods. The complementary coupling of multiscale experimental research and computational simulation methods is a powerful tool for the interface design of ceramic-metal laminated materials in the future.

Key words:  ceramic-metal laminated composite      interface bonding      phase field method      first-principles calculation      finite element analysis     
Received:  29 January 2021     
ZTFLH:  TB333  
Fund: National Natural Science Foundation of China(52074246);National Defense Basic Scientific Research Key Program of China(JCKY2020408B002);Major Science and Technology Project of Shanxi Province(20181101014)
About author:  ZHAO Yuhong, professor, Tel: 15035172958, E-mail: zhaoyuhong@nuc.edu.cn

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2021.00051     OR     https://www.ams.org.cn/EN/Y2021/V57/I9/1107

CeramicDensity / (g·cm-3)Elastic modulus / GPaHardness / (N·mm-2)Ductile fracture / (MPa·m1/2)
B4C2.540029002.5-2.8
Al2O33.6-3.934018003.3-4.8
SiC3.12-3.28408-45125002.8-3.2
TiB24.557026003.0-4.0
AlN2.5-3.234312004.0-6.0
Si3N43.231017004.0-7.0
Table 1  Properties of several common ceramics[6]
MetalDensity / (g·cm-3)Elastic modulus / GPaHardness / (N·mm-2)Ductile fracture / (MPa·m1/2)
Ti4.50610975480-90
Al2.77034620-25
Mg1.73813.231450-60
Cu8.9211037740-60
Table 2  Properties of several common metals[7-9]
Fig.1  Sketches of the deformation/failure sequence for a projectile impacting (V—velocity)[16]
Fig.2  Schematic illustration of the microstructure evolution and crack propagation path of laminated Ti/Al2O3 composite[37]
Fig.3  SEM images of fracture surfaces (a, b) and cross section (c, d) of (SiCp/Cu)-copper foil composites with different SiC volume fractions[38]
Fig.4  Process drawing of surface coating technology[52]
Fig.5  Graph of the dimensionless vertical displacement field (α—Dundurs parameter) (a) and corresponding three different situations marked A, B, and C in Fig.5a (b-d)[82]
Fig.6  After the main crack in material #2 hits the interface (a), the crack may continue to penetrate the material #1 (b), or peel off the interface (c) [83] (The length of the small crack a can represent the size of the defect on the material #1 and the interface, r is the distance that the crack extends through the interface into material #1, ω is the angle of the crack, θ is the angle at which the crack extends to the deflection of the material interface and ? is the penetration angle at which the crack deflection occurs when it hits the interface, σθθis the stress in the θ direction in polar coordinates (r, θ), σis the stress in the r direction in polar coordinates (r, θ), σrris the stress between the r axis and the θ axis in polar coordinates (r, θ))
Fig.7  Numerically simulated evolution of damage in targets A, B, and C subjected to projectile impact at 500 m/s (Vi—pojectile impact velocity)[44]
Fig.8  Average pressure of ceramics under the impact path versus time (a) and ceramic pressure distribution along the thickness direction at 1 and 3 μs (b)[95]
Fig.9  Particle distribution and Kernel function W within the support domain of particle i (xi, xj—positions of particles i and j, respectively; xij—relative distance between particles i and j; κh—radius of support domain)[98]
Fig.10  Local atomic structures of Ag(111)/SiC(111) interface (a) and Ag(111)/TiC(111) interface (b) before and after relaxation[135]
1 Lee M, Yoo Y H. Analysis of ceramic/metal armour systems [J]. Int. J. Impact Eng., 2001, 25: 819
2 Zaera R, Sánchez-Gálvez V. Analytical modelling of normal and oblique ballistic impact on ceramic/metal lightweight armours [J]. Int. J. Impact Eng., 1998, 21: 133
3 Rowe R G, Skelly D W, Larsen M, et al. Microlaminated high temperature intermetallic composites [J]. Scr. Metall. Mater., 1994, 31: 1487
4 Wang D C. Preparation and characterization of laminated Al/A2O3 composites with nacre-inspired hierarchical complexity [D]. Harbin: Harbin Institute of Technology, 2017
王道畅. 仿贝壳珍珠层结构叠层Al/Al2O3复合材料制备及性能测试 [D]. 哈尔滨: 哈尔滨工业大学, 2017
5 Song H C, Liang Z Y, Zhang Z G. Gunship with ceramic/composite armor [J]. Aviat. Maint. Eng., 1994, (9): 9
宋焕成, 梁志勇, 张佐光. 武装直升机与陶瓷/复合材料装甲 [J]. 航空制造工程, 1994, (9): 9
6 Hu Y L, Jiang F. Development and current status of armor ceramics [J]. Ordn. Mater. Sci. Eng., 1996, 19(5): 37
胡玉龙, 蒋 凡. 装甲陶瓷的发展现状和趋势 [J]. 兵器材料科学与工程, 1996, 19(5): 37
7 Rashad M, Pan F S, Tang A T, et al. Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method [J]. Prog. Nat. Sci.: Mater. Int., 2014, 24: 101
8 Rashad M, Pan F S, Tang A T, et al. Development of magnesium-graphene nanoplatelets composite [J]. J. Compos. Mater., 2015, 49: 285
9 Cao Z, Wang X D, Li J L, et al. Reinforcement with graphene nanoflakes in titanium matrix composites [J]. J. Alloys Compd., 2017, 696: 498
10 Jiao F F, Liu M Y, Jiang F C, et al. Continuous carbon fiber reinforced Ti/Al3Ti metal-intermetallic laminate (MIL) composites fabricated using ultrasonic consolidation assisted hot pressing sintering [J]. Mater. Sci. Eng., 2019, A765: 138255
11 Tasdemirci A, Tunusoglu G, Güden M. The effect of the interlayer on the ballistic performance of ceramic/composite armors: Experimental and numerical study [J]. Int. J. Impact Eng., 2012, 44: 1
12 Gama B A, Bogetti T A, Fink B K, et al. Aluminum foam integral armor: A new dimension in armor design [J]. Compos. Struct., 2001, 52: 381
13 Shen Z Y, Huang G H, He L M, et al. Preparation and mechanical properties of large-side TiAl/Ti3Al microlaminated thin sheets [J]. J. Mater. Eng., 2018, 46(5): 72
申造宇, 黄光宏, 何利民等. 大尺寸TiAl/Ti3Al微叠层超薄板制备和力学性能 [J]. 材料工程, 2018, 46(5): 72
14 Wadley H N G, O'masta M R, Dharmasena K P, et al. Effect of core topology on projectile penetration in hybrid aluminum/alumina sandwich structures [J]. Int. J. Impact Eng., 2013, 62: 99
15 Sadanandan S, Hetherington J G. Characterisation of ceramic/steel and ceramic/aluminium armours subjected to oblique impact [J]. Int. J. Impact Eng., 1997, 19: 811
16 Yungwirth C J, O'connor J, Zakraysek A, et al. Explorations of hybrid sandwich panel concepts for projectile impact mitigation [J]. J. Am. Ceram. Soc., 2011, 94: s62
17 Übeyli M, Yıldırım R O, Ögel B. Investigation on the ballistic behavior of Al2O3/Al2024 laminated composites [J]. J. Mater. Process. Technol., 2008, 196: 356
18 Shirvanimoghaddam K, Khayyam H, Abdizadeh H, et al. Effect of B4C, TiB2 and ZrSiO4 ceramic particles on mechanical properties of aluminium matrix composites: Experimental investigation and predictive modelling [J]. Ceram. Int., 2016, 42: 6206
19 Prakash A, Rajasankar J, Anandavalli N, et al. Influence of adhesive thickness on high velocity impact performance of ceramic/metal composite targets [J]. Int. J. Adhes. Adhes., 2013, 41: 186
20 Medvedovski E. Ballistic performance of armour ceramics: Influence of design and structure. Part 1 [J]. Ceram. Int., 2010, 36: 2103
21 Medvedovski E. Ballistic performance of armour ceramics: Influence of design and structure. Part 2 [J]. Ceram. Int., 2010, 36: 2117
22 Li Y. Research progress on gradient metallic materials [J]. Mater. China, 2016, 35: 658
李 毅. 梯度结构金属材料研究进展 [J]. 中国材料进展, 2016, 35: 658
23 Li W K, Han B H, Zhao Z M. Research progress in ceramics armor materials [J]. Spec. Cast. Nonferrous Alloys, 2018, 38: 259
李维锴, 韩保红, 赵忠民. 装甲防护陶瓷材料的研究进展 [J]. 特种铸造及有色合金, 2018, 38: 259
24 Jiao L J, Li J. Application of ceramics-metal function gradient composite material in armor [J]. J. Sichuan Ordn., 2006, 27(4): 22
焦丽娟, 李 军. 陶瓷-金属功能梯度复合材料在装甲防护中的应用 [J]. 四川兵工学报, 2006, 27(4): 22
25 Chao Z L, Jiang L T, Chen G Q, et al. The microstructure and ballistic performance of B4C/AA2024 functionally graded composites with wide range B4C volume fraction [J]. Composites, 2019, 161B: 627
26 Yu H. Experimental study on penetration resistance of functionally graded materials [D]. Xi'an: Northwestern Polytechnical University, 2004
于 洪. 功能梯度材料抗侵彻性能试验研究 [D]. 西安: 西北工业大学, 2004
27 Medvedovski E. Lightweight ceramic composite armour system [J]. Adv. Appl. Ceram., 2006, 105: 241
28 Gao Y B, Zhang W, Yi C H, et al. Effects of adhesive layer on anti-penetration performance of ceramic/metal composite armour [J]. J. Vibrat. Shock, 2019, 38(13): 95
高玉波, 张 伟, 宜晨虹等. 黏结层对陶瓷/金属复合装甲抗弹性能的影响研究 [J]. 振动与冲击, 2019, 38(13): 95
29 Li Y, Zhao J P, Zeng G, et al. Ni/Ni3Al microlaminate composite produced by EB-PVD and the mechanical properties [J]. Mater. Lett., 2004, 58: 1629
30 Gao Y B, Zhang W, Xu P, et al. Influence of epoxy adhesive layer on impact performance of TiB2-B4C composites armor backed by aluminum plate [J]. Int. J. Impact Eng., 2018, 122: 60
31 Wu Y, Wang X D, Liu D, et al. Development and application analysis of ceramic composites armor for helicopter [J]. J. Aeron. Mater., 2019, 39(5): 34
武 岳, 王旭东, 刘 迪等. 直升机陶瓷复合装甲发展现状及新型材料应用前景 [J]. 航空材料学报, 2019, 39(5): 34
32 Fang L H, Zheng X Y, Ma L, et al. Armor protection development of tank & armored vehicle [J]. J. Sichuan Ordn., 2014, 35(2): 23
房凌晖, 郑翔玉, 马 丽等. 坦克装甲车辆装甲防护发展研究 [J]. 四川兵工学报, 2014, 35(2): 23
33 Signetti S, Pugno N M. Evidence of optimal interfaces in bio-inspired ceramic-composite panels for superior ballistic protection [J]. J. Eur. Ceram. Soc., 2014, 34: 2823
34 Wu C D, Shi R Y, Zhang J, et al. Synthesis of functionally graded AA7075-B4C composite with multi-level gradient structure [J]. Ceram. Int., 2019, 45: 7761
35 Wang Y. The fabrication of iron and nickel-based metal-intermetallic-laminate composites and study on microstructure and properties of intermetallic layer [D]. Dalian: Dalian University of Technology, 2016
王 宇. 铁基及镍基金属/金属间化合物微叠层复合材料制备与化合物层组织性能研究 [D]. 大连: 大连理工大学, 2016
36 Saravanan R A, Surappa M K. Fabrication and characterisation of pure magnesium-30 vol.% SiCP particle composite [J]. Mater. Sci. Eng., 2000, A276: 108
37 Wu C, Li Y K, Wang Z. Evolution and mechanism of crack propagation method of interface in laminated Ti/Al2O3 composite [J]. J. Alloys Compd., 2016, 665: 37
38 Li Y W, Xiao L R, Zhao X J, et al. Preparation, microstructure and properties of (SiCp/Cu)-copper foil laminated composites [J]. Acta Mater. Compos. Sin., 2018, 35: 896
李雨蔚, 肖来荣, 赵小军等. (SiCp/Cu)-铜箔叠层复合材料的制备与组织性能 [J]. 复合材料学报, 2018, 35: 896
39 Jin Q, Ren X P, Li S X, et al. Effect of SiC fiber reinforcement on structure properties of laminated composite [J]. J. Plast. Eng., 2019, 26(5): 166
金 旗, 任学平, 李殊霞等. SiC纤维增强体对叠层复合材料结构性能的影响 [J]. 塑性工程学报, 2019, 26(5): 166
40 Han Y Q, Lin C F, Han X X, et al. Fabrication, interfacial characterization and mechanical properties of continuous Al2O3 ceramic fiber reinforced Ti/Al3Ti metal-intermetallic laminated (CCFR-MIL) composite [J]. Mater. Sci. Eng., 2017, A688: 338
41 Chen S, Zhang Z M, Zhang L. Review on dynamic fracture of ceramics materials in armor applications [J]. Spec. Cast. Nonferrous Alloys, 2016, 36: 401
陈 硕, 赵忠民, 张 龙. 陶瓷装甲材料动态力学研究进展 [J]. 特种铸造及有色合金, 2016, 36: 401
42 de Oliveira Braga F, Lopes P H L M, Oliveira M S, et al. Thickness assessment and statistical optimization of a 3-layered armor system with ceramic front and curaua fabric composite/aluminum alloy backing [J]. Composites, 2019, 166B: 48
43 Li L, Zhu Z C, Zhou D J. Application of finite element analysis in development of metal clad materials [J]. Southern Met., 2015, (6): 1
李 龙, 祝志超, 周德敬. 有限元分析在金属层状复合材料开发中的应用 [J]. 南方金属, 2015, (6): 1
44 Zhang R, Han B, Li L, et al. Influence of prestress on ballistic performance of bi-layer ceramic composite armors: Experiments and simulations [J]. Compos. Struct., 2019, 227: 111258
45 Zhang Z, Zhou J, Zhou J, et al. Research progress on preparation technology and failure mechanism of metal/ceramic laminated composites [J]. J. Aeron. Mater., 2020, 40(6): 33
张 振, 周 玖, 周 婕等. 金属陶瓷层状复合材料制备工艺与失效机制研究进展 [J]. 航空材料学报, 2020, 40(6): 33
46 Heuzeroth F, Fritzsche J, Peuker U A. Wetting and its influence on the filtration ability of ceramic foam filters [J]. Particuology, 2015, 18: 50
47 Bao S, Syvertsen M, Kvithyld A, et al. Wetting behavior of aluminium and filtration with Al2O3 and SiC ceramic foam filters [J]. Trans. Nonferrous Met Soc. China, 2014, 24: 3922
48 Chaklader A C D, Armstrong A M, Misra S K. Interface reactions between metals and ceramics: IV, Wetting of sapphire by liquid copper-oxygen alloys [J]. J. Am. Ceram. Soc., 1968, 51: 630
49 Mihailovic M, Volkov-Husović T, Raic K. Micro-and nano-scale wetting of reactive metal at metal/ceramic interface [J]. Adv. Sci. Technol., 2006, 45: 1526
50 Zhao J Z, Gao J Q, Jin Z H. Preparation of three- dimensional structure silicon carbide reinforced aluminum matrix composites [J]. Ordn. Mater. Sci. Eng., 2004, 27(6): 11
赵敬忠, 高积强, 金志浩. 三维碳化硅结构增强铝基复合材料的制备 [J]. 兵器材料科学与工程, 2004, 27(6): 11
51 Liu L X. Wettability of molten Ni-(Cr, W) alloys on alumina ceramic substrate [D]. Chongqing: Chongqing University of Technology, 2009
刘兰霄. 熔融Ni-(Cr, W)合金与Al2O3陶瓷的润湿性研究 [D]. 重庆: 重庆理工大学, 2009
52 Wang W X. Study on interfacial wettability and mechanical properties of Al2O3/Cu composites [D]. Xi'an: Xi'anUniversity of Technology, 2019
王文祥. Al2O3/Cu复合材料的界面润湿性及其力学性能研究 [D]. 西安: 西安理工大学, 2019
53 Chen S, Zhao Z M, Huang X G, et al. Interfacial microstructure and mechanical properties of laminated composites of TiB2-based ceramic and 42CrMo alloy steel [J]. Mater. Sci. Eng., 2016, A674: 335
54 Cui X P, Fan G H, Geng L, et al. Influence of raw material selection and fabrication parameters on microstructure and properties of micro-laminated TiB2-TiAl composite sheets [J]. Mater. Sci. Eng., 2014, A589: 83
55 Monazzah A H, Pouraliakbar H, Jandaghi M R, et al. Influence of interfacial adhesion on the damage tolerance of Al6061/SiCp laminated composites [J]. Ceram. Int., 2017, 43: 2632
56 Zhang H, Yu J D, Pei X Y, et al. An overview of phase field approach to fracture [J]. Chin. J. High. Pressure Phys., 2019, 33(3): 030109
张 豪, 于继东, 裴晓阳等. 相场断裂方法发展概况 [J]. 高压物理学报, 2019, 33(3): 030109
57 Hansen-Dörr A C, de Borst R, Hennig P, et al. Phase-field modelling of interface failure in brittle materials [J]. Comput. Methods Appl. Mech. Eng., 2019, 346: 25
58 Roy S, Butz B, Wanner A. Damage evolution and domain-level anisotropy in metal/ceramic composites exhibiting lamellar microstructures [J]. Acta Mater., 2010, 58: 2300
59 Bai Y H, Zhang B X, Du H L, et al. Efficient multiscale strategy for toughening HfB2 ceramics: A heterogeneous ceramic-metal layered architecture [J]. J. Am. Ceram. Soc., 2021, 104: 1841
60 Hu Z J, Shen P, Jiang Q C. Developing high-performance laminated Cu/TiC composites through melt infiltration of Ni-doped freeze-cast preforms [J]. Ceram. Int., 2019, 45: 11686
61 Guo H J, Zhao Y H, Sun Y Y, et al. Phase field crystal study of grain boundary structure and annihilation mechanism in low-angle grain boundary [J]. Superlattices Microstruct., 2019, 129: 163
62 Zhao Y H, Zhang B, Hou H, et al. Phase-field simulation for the evolution of solid/liquid interface front in directional solidification process [J]. J. Mater. Sci. Technol., 2019, 35: 1044
63 Sun Y Y, Zhao Y H, Zhao B J, et al. Multi-component phase-field simulation of microstructural evolution and elemental distribution in Fe-Cu-Mn-Ni-Al alloy [J]. Calphad, 2020, 69: 101759
64 Yang Y B, Zhao Y H, Tian X L, et al. Microscopic phase-field simulation for precipitation process of Ni60Al20V20 medium entropy alloy [J]. Acta Phys. Sin., 2020, 69(14): 140201
杨一波, 赵宇宏, 田晓林等. Ni60Al20V20中熵合金沉淀过程微扩散相场法模拟 [J]. 物理学报, 2020, 69(14): 140201
65 Griffith A A. The phenomena of rupture and flow in solids [J]. Philos. Trans. R. Soc., 1921, 221A: 163
66 Francfort G A, Marigo J J. Revisiting brittle fracture as an energy minimization problem [J]. J. Mech. Phys. Solids, 1998, 46: 1319
67 Bourdin B, Francfort G A, Marigo J J. Numerical experiments in revisited brittle fracture [J]. J. Mech. Phys. Solids, 2000, 48: 797
68 Wilson Z A, Borden M J, Landis C M. A phase-field model for fracture in piezoelectric ceramics [J]. Int. J. Fract., 2013, 183: 135
69 Ziaei-Rad V, Shen L, Jiang J H, et al. Identifying the crack path for the phase field approach to fracture with non-maximum suppression [J]. Comput. Methods Appl. Mech. Eng., 2016, 312: 304
70 Kuhn C, Müller R. A continuum phase field model for fracture [J]. Eng. Fract. Mech., 2010, 77: 3625
71 Duda F P, Ciarbonetti A, Sánchez P J, et al. A phase-field/gradient damage model for brittle fracture in elastic-plastic solids [J]. Int. J. Plast., 2015, 65: 269
72 Ambati M, Gerasimov T, De Lorenzis L. Phase-field modeling of ductile fracture [J]. Comput. Mech., 2015, 55: 1017
73 Liu Y Y C, Weng K X, Shen Y X. A manifold learning approach to accelerate phase field fracture simulations in the representative volume element [J]. SN Appl. Sci., 2020, 2: 1682
74 Russ J, Slesarenko V, Rudykh S, et al. Rupture of 3D-printed hyperelastic composites: Experiments and phase field fracture modeling [J]. J. Mech. Phys. Solids, 2020, 140: 103941
75 Li P F, Yvonnet J, Combescure C. An extension of the phase field method to model interactions between interfacial damage and brittle fracture in elastoplastic composites [J]. Int. J. Mech. Sci., 2020, 179: 105633
76 Dean A, Reinoso J, Jha N K, et al. A phase field approach for ductile fracture of short fibre reinforced composites [J]. Theor. Appl. Fract. Mech., 2020, 106: 102495
77 Hirshikesh, Pramod A L N, Annabattula R K, et al. Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method [J]. Comput. Methods Appl. Mech. Eng., 2019, 355: 284
78 Wu J, McAuliffe C, Waisman H, et al. Stochastic analysis of polymer composites rupture at large deformations modeled by a phase field method [J]. Comput. Methods Appl. Mech. Eng., 2016, 312: 596
79 Van Do T, Doan D H, Duc N D, et al. Phase-field thermal buckling analysis for cracked functionally graded composite plates considering neutral surface [J]. Compos. Struct., 2017, 182: 542
80 Carlsson J, Isaksson P. Dynamic crack propagation in wood fibre composites analysed by high speed photography and a dynamic phase field model [J]. Int. J. Solids Struct., 2018, 144-145: 78
81 Khaderi S N, Murali P, Ahluwalia R. Failure and toughness of bio-inspired composites: Insights from phase field modelling [J]. Comput. Mater. Sci., 2014, 95: 1
82 Paggi M, Reinoso J. Revisiting the problem of a crack impinging on an interface: A modeling framework for the interaction between the phase field approach for brittle fracture and the interface cohesive zone model [J]. Comput. Methods Appl. Mech. Eng., 2017, 321: 145
83 Zhang Z, Suo Z G. Split singularities and the competition between crack penetration and debond at a bimaterial interface [J]. Int. J. Solids Struct., 2007, 44: 4559
84 Zhou Y S, Liang S, Wang D P, et al. Study on bulletpro of performance of ceramic/UHMWPE laminate/damping material composite target [J]. Compos. Sci. Eng., 2021, (4): 66
周越松, 梁 森, 王得盼等. 陶瓷/UHMWPE层合板/阻尼材料复合靶板防弹性能研究 [J]. 复合材料科学与工程, 2021, (4): 66
85 Zhang L. Interface and high strain rate deformation behavior of layered B4C/Al composites [D]. Jinan: University of Jinan, 2020
张 柳. 层状B4C/Al复合材料的界面研究与高应变速率变形行为 [D]. 济南: 济南大学, 2020
86 Liu Y Y. The design and toughing mechanism research of heterogeneous modulus laminated boron carbide composites [D]. Harbin: Harbin Engineering University, 2012
刘莹莹. 异质模量层状碳化硼复合材料的设计及韧化机制研究 [D]. 哈尔滨: 哈尔滨工程大学, 2012
87 Yamamoto S, Sato K, Koseki H. A study on lateral impact of Timoshenko beam [J]. Comput. Mech., 1990, 6: 101
88 Liu B X, Huang L J, Geng L, et al. Microstructure and tensile behavior of novel laminated Ti-TiBw/Ti composites by reaction hot pressing [J]. Mater. Sci. Eng., 2013, A583: 182
89 Maiti D K, Sinha P K. Bending, free vibration and impact response of thick laminated composite plates [J]. Comput. Struct., 1996, 59: 115
90 Singh B N, Yadav D, Iyengar N G R. Natural frequencies of composite plates with random material properties using higher-order shear deformation theory [J]. Int. J. Mech. Sci., 2001, 43: 2193
91 Messina A, Soldatos K P. A general vibration model of angle-ply laminated plates that accounts for the continuity of interlaminar stresses [J]. Int. J. Solids Struct., 2002, 39: 617
92 Zeng D, Fang D N. Numerical analysis of fracture behavior of laminated ceramic in three-point bending [J]. J. Basic Sci. Eng., 2000, 8: 398
曾 东, 方岱宁. 用界面元分析层状陶瓷的三点弯曲断裂性能 [J]. 应用基础与工程科学学报, 2000, 8: 398
93 Huang Y, Wang C A. Multiphase Composite Ceramics with High Performance [M]. Beijing: Tsinghua University Press, 2008: 1
黄 勇, 汪长安. 高性能多相复合陶瓷 [M]. 北京: 清华大学出版社, 2008: 1
94 Yu Y H, Wang Y B, Tan H N, et al. Elastic modulus, Poisson ratio of ZA35/TiC and dynamic performance of lts structural parts [J]. Mater. Heat Treat., 2012, 41(16): 40
于英华, 王益博, 谈海南等. ZA35/TiC合金弹性模量、泊松比及其结构件动态性能研究 [J]. 热加工工艺, 2012, 41(16): 40
95 Luo D J, Wang Y W, Wang F C, et al. The influence of metal cover plates on ballistic performance of silicon carbide subjected to large-scale tungsten projectile [J]. Mater. Des., 2020, 191: 108659
96 Pang Z J. Study of efficient meshfree methods for large deformation analysis [D]. Dalian: Dalian University of Technology, 2018
庞志佳. 大变形分析的高效无网格法研究 [D]. 大连: 大连理工大学, 2018
97 Pang M H, Wang Z K, Jiao H W. The contrastand analysis of SPH method and FEM method [J]. Mach. Des. Manuf., 2008, (2): 32
逄明华, 王占奎, 焦红伟. 无网格法中SPH方法和有限元方法的对比分析 [J]. 机械设计与制造, 2008, (2): 32
98 Seo H D, Park H J, Kim J I, et al. The particle-attached element interpolation for density correction in smoothed particle hydrodynamics [J]. Adv. Eng. Soft., 2021, 154: 102972
99 Lucy L B. A numerical approach to the testing of the fission hypothesis [J]. Astron. J., 1977, 8: 1013
100 Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods [J]. Int. J. Numer. Methods Eng., 1994, 37: 229
101 Atluri S N, Zhu T. A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics [J]. Comput. Mech., 1998, 22: 117
102 Atluri S N, Kim H G, Cho J Y. A critical assessment of the truly Meshless Local Petrov-Galerkin (MLPG), and Local Boundary Integral Equation (LBIE) methods [J]. Comput. Mech., 1999, 24: 348
103 Wendland H. Meshless Galerkin methods using radial basis functions [J]. Math. Comp., 1999, 68: 1521
104 Hao S, Park H S, Liu W K. Moving particle finite element method [J]. Int. J. Numer. Methods Eng., 2002, 53: 1937
105 Liu W K, Han W M, Lu H S, et al. Reproducing kernel element method. Part I: Theoretical formulation [J]. Comput. Methods Appl. Mech. Eng., 2004, 193: 933
106 Sigalotti L D G, Rendón O, Klapp J, et al. A new insight into the consistency of the SPH interpolation formula [J]. Appl. Math. Comput., 2019, 356: 50
107 Li B, Habbal F, Ortiz M. Optimal transportation meshfree approximation schemes for fluid and plastic flows [J]. Int. J. Numer. Methods Eng., 2010, 83: 1541
108 Ma T B, Su X, Hao L. Numerical simulation of hypervelocity impact based on the optimal transportation meshfree method [J]. Trans. Beijing Inst. Technol., 2020, 40: 617
马天宝, 粟 鑫, 郝 莉. 基于OTM方法的超高速碰撞问题数值模拟 [J]. 北京理工大学学报, 2020, 40: 617
109 Zhang T L, Ma T B, Hao L. Parallel research on numerical simulation of hypervelocity impact based on pOTM method [J]. J. Ordn. Equip. Eng., 2021, 42(1): 144
张天龙, 马天宝, 郝 莉. 基于pOTM方法的超高速碰撞并行数值模拟研究 [J]. 兵器装备工程学报, 2021, 42(1): 144
110 Zhu M L. A comparative study of three mesh-free methods: Smoothed particle hydrodynamics, dissipative particle dynamics and smoothed dissipative particle dynamics [D]. Jilin: University of Jilin, 2020
朱曼琳. 三种无网格法的对比研究——光滑粒子动力学、耗散粒子动力学和光滑耗散粒子动力学 [D]. 吉林: 吉林大学, 2020
111 Li G A. Deformation behaviors and microstructure change of several metals under high velocity impact conditions [D]. Harbin: Harbin Institute of Technology, 2005
李国爱. 高速撞击条件下几种金属材料的变形及组织演变行为 [D]. 哈尔滨: 哈尔滨工业大学, 2005
112 Yang Y, Li X J, Zhu D M, et al. Research development of materials damage effect under hypervelocity impact [J]. Ordn. Mater. Sci. Eng., 2014, 37(5): 133
杨 益, 李晓军, 朱大明等. 超高速碰撞材料毁伤效应研究进展 [J]. 兵器材料科学与工程, 2014, 37(5): 133
113 Dong H P, Guo F, Huang W J, et al. Shear banding behavior of AA2099 Al-Li alloy in asymmetrical rolling and its effect on recrystallization in subsequent annealing [J]. Mater. Charac., 2021, 177: 111155
114 Dong E T. A first-principles study of metal-ceramic interfacial bonding [D]. Jilin: Jilin University, 2013
董二婷. 金属-陶瓷界面结合的第一原理研究 [D]. 吉林: 吉林大学, 2013
115 Fan R. A first-principles investigation on the interfacial bonding properties of ceramic/metal composites [D]. Shanghai: Shanghai Jiaotong University, 2019
范 睿. 陶瓷/金属复合材料界面结合性能的第一性原理研究 [D]. 上海: 上海交通大学, 2019
116 Freeman A J, Li C, Fu C L. Energetics, bonding mechanism and electronic structure of metal/ceramic interfaces [A]. Metal-Ceramic Interfaces [M]. Oxford: Pergamon, 1990: 2
117 Rao F Y, Wu R Q, Freeman A J. Structure and bonding at metal-ceramic interfaces: Ag/CdO(001) [J]. Phys. Rev., 1995, 51B: 10052
118 Li C, Freeman A J. Giant monolayer magnetization of Fe on MgO: A nearly ideal two-dimensional magnetic system [J]. Phys. Rev., 1991, 43B: 780
119 Wu R Q, Freeman A J. Predicted c(2 × 2) buckling reconstruction of monolayer Mn on Fe(001) and its importance to the interfacial magnetic ordering [J]. Phys. Rev., 1995, 51B: 17131
120 Smith J R, Hong T, Srolovitz D J. Metal-ceramic adhesion and the harris functional [J]. Phys. Rev. Lett., 1994, 72: 4021
121 Hong T, Smith J R, Srolovitz D J. Metal/ceramic adhesion: A first principles study of MgO/Al and MgO/Ag [J]. J. Adhes. Sci. Technol., 1994, 8: 837
122 Hong T, Smith J R, Srolovitz D J. Theory of metal—Ceramic adhesion [J]. Acta Metall. Mater., 1995, 43: 2721
123 Hong T, Smith J R, Srolovitz D J. Impurity effects on adhesion: Nb, C, O, B, and S at a Mo/MoSi2 interface [J]. Phys. Rev., 1993, 47B: 13615
124 Hong T, Smith J R, Srolovitz D J. Impurity effects on adhesion [J]. Phys. Rev. Lett., 1993, 70: 615
125 Zhukovskii Y F, Kotomin E A, Jacobs P W M, et al. Ab initio modeling of metal adhesion on oxide surfaces with defects [J]. Phys. Rev. Lett., 2000, 84: 1256
126 Matsunaka D, Shibutani Y. Effects of oxygen vacancy on adhesion of incoherent metal/oxide interface by first-principles calculations [J]. Surf. Sci., 2010, 604: 196
127 Benedek R, Alavi A, Seidman D N, et al. First principles simulation of a ceramic/metal interface with misfit [J]. Phys. Rev. Lett., 2000, 84: 3362
128 Long Y, Chen N X, Zhang W Q. Pair potentials for a metal-ceramic interface by inversion of adhesive energy [J]. J. Phys.: Condens. Matter, 2005, 17: 2045
129 Liu L M, Wang S Q, Ye H Q. Adhesion and bonding of the Al/TiC interface [J]. Surf. Sci., 2004, 550: 46
130 Dudiy S V, Lundqvist B I. Wetting of TiC and TiN by metals [J]. Phys. Rev., 2004, 69B: 125421
131 Deng C, Xu B, Wu P, et al. Stability of the Al/TiB2 interface and doping effects of Mg/Si [J]. Appl. Surf. Sci., 2017, 425: 639
132 Rao L X, Liu H, Liu S, et al. Interface relationship between TiN and Ti substrate by first-principles calculation [J]. Comput. Mater. Sci., 2018, 155: 36
133 Liu L M, Wang S Q, Ye H Q. Adhesion of metal-carbide/nitride interfaces: Al/TiC and Al/TiN [J]. J. Phys.: Condens. Matter, 2003, 15: 8103
134 Li H T, Chen L F, Yuan X, et al. Interfacial stoichiometry and adhesion at metal/α-Al2O3 interfaces [J]. J. Am. Ceram. Soc., 2011, 94: s154
135 Yang J, Ye Z, Huang J H, et al. First-principles calculations on wetting interface between Ag-Cu-Ti filler metal and SiC ceramic: Ag (111)/SiC (111) interface and Ag (111)/TiC (111) interface [J]. Appl. Surf. Sci., 2018, 462: 55
136 Liu B B, Yang J F. Mg on adhesion of Al(111)/3C-SiC(111) interfaces from first principles study [J]. J. Alloys Compd., 2019, 791: 530
137 Guo X Y, Zhang Y, Jung Y G, et al. Ideal tensile strength and shear strength of ZrO2(111)/Ni(111) ceramic-metal Interface: A first principle study [J]. Mater. Des., 2016, 112: 254
[1] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[2] LI Suo, CHEN Weiqi, HU Long, DENG Dean. Influence of Strain Hardening and Annealing Effect on the Prediction of Welding Residual Stresses in a Thick-Wall 316 Stainless Steel Butt-Welded Pipe Joint[J]. 金属学报, 2021, 57(12): 1653-1666.
[3] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[4] QIN Qin, LI Cheng, HE Liu, YE Chenlong, ZANG Yong. An Investigation of Interface Bonding Strength of Bimetal Plate Based on the Optimization of Asymmetric Double Cantilever Beam Model[J]. 金属学报, 2020, 56(12): 1617-1628.
[5] Jing BAI, Shaofeng SHI, Jinlong WANG, Shuai WANG, Xiang ZHAO. First-Principles Calculations of Phase Stability and Magnetic Properties of Ni-Mn-Ga-Ti FerromagneticShape Memory Alloys[J]. 金属学报, 2019, 55(3): 369-375.
[6] Cheng WEI, Changbo KE, Haitao MA, Xinping ZHANG. A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System[J]. 金属学报, 2018, 54(8): 1204-1214.
[7] Caihong DONG, Yongli LIU, Yang QI. Effect of Thickness on the Surface and Electronic Properties of Bi Film[J]. 金属学报, 2018, 54(6): 935-942.
[8] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[9] Yuchao FENG, Weiwei XING, Shoulong WANG, Xingqiu CHEN, Dianzhong LI, Yiyi LI. First-Principles Study of Hydrogen Behaviors at Oxide/Ferrite Interface in ODS Steels[J]. 金属学报, 2018, 54(2): 325-338.
[10] Guohuai LIU, Tianrui LI, Mang XU, Tianliang FU, Yong LI, Zhaodong WANG, Guodong WANG. Microstructural Evolution and Mechanical Properties of TC4 Titanium Alloy During Acculative Roll Bonding Process[J]. 金属学报, 2017, 53(9): 1038-1046.
[11] Shu GUO,En-Hou HAN,Haitao WANG,Zhiming ZHANG,Jianqiu WANG. Life Prediction for Stress Corrosion Behavior of 316L Stainless Steel Elbow of Nuclear Power Plant[J]. 金属学报, 2017, 53(4): 455-464.
[12] ZHAO Yan, ZHANG Hongyu, WEI Hua, ZHENG Qi, JIN Tao, SUN Xiaofeng. A PHASE FIELD STUDY FOR SCALING RULES OF GRAIN COARSENING IN POLYCRYSTALLINE SYSTEM CONTAINING SECOND-PHASE PARTICLES[J]. 金属学报, 2013, 49(8): 981-988.
[13] ZHANG Xudong, WANG Shaoqing. FIRST-PRINCIPLES INVESTIGATION OF THE THERMODYNAMICS PROPERTIES OF Al3Sc AND Al3Zr INTERMETALLICS[J]. 金属学报, 2013, 29(4): 501-505.
[14] LI Jizhan, FU Ying, JIE Jinchuan, ZHAO Jialei, Joonpyo Park, Jongho Kim,LI Tingju. CONTINUOUS CASTING OF THE CLADDING 3003/4004 ALUMINUM ALLOY CIRCULAR INGOT[J]. 金属学报, 2013, 49(3): 297-302.
[15] MAO Pingli, YU Bo, LIU Zheng, WANG Feng, JU Yang. FIRST-PRINCIPLES CALCULATION OF ELECTRONIC STRUCTURE AND ELASTIC PROPERTY OF AB2 TYPE INTERMETALLICS IN Mg-Zn-Ca ALLOY[J]. 金属学报, 2013, 49(10): 1227-1233.
No Suggested Reading articles found!