Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (6): 849-854    DOI: 10.11900/0412.1961.2019.00349
Current Issue | Archive | Adv Search |
Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems
HUANG Huogen(), ZHANG Pengguo, ZHANG Pei, WANG Qinguo
Institute of Materials, China Academy of Engineering Physics, Jiangyou 621907, China
Cite this article: 

HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems. Acta Metall Sin, 2020, 56(6): 849-854.

Download:  HTML  PDF(1256KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Because of having better corrosion resistance properties than crystalline uranium alloys, U-based metallic glasses show strong potential of applications in nuclear fields. U-Co and U-Fe are U-based important base glass systems, from which almost all the reported multi-component U-based amorphous alloys derive. However, which system possessing higher glass forming ability is unclear yet. Therefore, the relationship between the glass formation and the solidification rate is studied on two glassy alloys U66.7Co33.3 and U69.2Fe30.8 in this work, which are the best glass former in the corresponding system. A series of amorphous samples were prepared by modifying the cooling rate of their melts, and then were measured by using XRD and calorimetric analysis technique. The results show that both alloys were able to nearly amorphize completely at higher cooling rate, and tended to segregate U6Mn-typed crystalline phase when the cooling rate declined to some extent. In contrast, the U-Fe alloy needs a much lower critical cooling rate to achieve fully amorphous structure, directly demonstrating that U-Fe system possesses stronger glass forming capacity than U-Co. The reason for this conclusion is that the former system is of both thermodynamic and kinetic advantages for glass formation. This result can be applied as the foundation to exploit superior novel multicomponent U-based amorphous alloys.

Key words:  uranium alloy      amorphous alloy      metallic glass      glass forming ability     
Received:  21 October 2019     
ZTFLH:  TG139  
Fund: National Defense Science and Technology Foundation of China(1300025);Planning Foundation of China Academy of Engineering Physics(TCGH071601)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00349     OR     https://www.ams.org.cn/EN/Y2020/V56/I6/849

Fig.1  XRD spectra of U66.7Co33.3 alloy samples prepared under different Cu-cooler linear rates
Fig.2  DSC curves of U66.7Co33.3 alloy samples prepared under different Cu-cooler linear rates
(a) crystallization (b) melting
Alloy

V

m·s-1

Crystallization enthalpy / (J·g-1)
U66.7Co33.31547.14
2547.75
5049.28
U69.2Fe30.8100.96
1523.44
2023.69
Table 1  Crystallization enthalpies of U-based amorphous samples prepared under different Cu-cooler linear rates (V)
Fig.3  XRD spectra of U69.2Fe30.8 alloy samples prepared under different Cu-cooler linear rates
Fig.4  DSC curves of U69.2Fe30.8 alloy samples prepared under different Cu-cooler linear rates
(a) crystallization (b) melting
ElementAtomic numberOuter electron configurationAtomic size difference with UElectronegativity difference with U
Fe263d64s2About 18%0.4
Co273d74s2About 20%0.5
Table 2  Contrast of physical and chemical properties between Fe and Co
[1] Wang W H, Luo P. The dynamic behavior hidden in the long time scale of metallic glasses and its effect on the properties [J]. Acta Metall. Sin., 2018, 54: 1479
doi: 10.11900/0412.1961.2018.00247
汪卫华, 罗 鹏. 金属玻璃中隐藏在长时间尺度下的动力学行为及其对性能的影响 [J]. 金属学报, 2018, 54: 1479
doi: 10.11900/0412.1961.2018.00247
[2] Peng C, Li Y, Deng Y H, et al. Atomistic simulation for local atomic structures of amorphous Ni-P alloys with near-eutectic compositions [J]. Acta Metall. Sin., 2017, 53: 1659
doi: 10.11900/0412.1961.2017.00185
彭 超, 李 媛, 邓永和等. 近共晶成分Ni-P非晶合金微结构特征的原子模拟分析 [J]. 金属学报, 2017, 53: 1659
doi: 10.11900/0412.1961.2017.00185
[3] Geng Y X, Zhang Z J, Wang Y M, et al. Structure-property correlation of high Fe-content Fe-B-Si-Hf bulk glassy alloys [J]. Acta Metall. Sin., 2017, 53: 369
doi: 10.11900/0412.1961.2016.00281
耿遥祥, 张志杰, 王英敏等. 高Fe含量Fe-B-Si-Hf块体非晶合金的结构-性能关联 [J]. 金属学报, 2017, 53: 369
doi: 10.11900/0412.1961.2016.00281
[4] Zhang Z F, Qu R T, Liu Z Q. Advances in fracture behavior and strength theory of metallic glasses [J]. Acta Metall. Sin., 2016, 52: 1171
doi: 10.11900/0412.1961.2016.00348
张哲峰, 屈瑞涛, 刘增乾. 金属玻璃的断裂行为与强度理论研究进展 [J]. 金属学报, 2016, 52: 1171
doi: 10.11900/0412.1961.2016.00348
[5] Zhou W, Weng W P, Hou J X. Glass-forming ability and corrosion resistance of Zr-Cu-Al-Co bulk metallic glass [J]. J. Mater. Sci. Technol., 2016, 32: 349
doi: 10.1016/j.jmst.2015.12.012
[6] Yu Q, Wang X D, Lou H B, et al. Atomic packing in Fe-based metallic glasses [J]. Acta Mater., 2016, 102: 116
doi: 10.1016/j.actamat.2015.09.001
[7] Wang Z R, Qiang J B, Wang Y M, et al. Composition design procedures of Ti-based bulk metallic glasses using the cluster-plus-glue-atom model [J]. Acta Mater., 2016, 111: 366
doi: 10.1016/j.actamat.2016.03.072
[8] Qiao J W, Jia H L, Liaw P K. Metallic glass matrix composites [J]. Mater. Sci. Eng., 2016, R100: 1
[9] Plummer J. Is metallic glass poised to come of age? [J]. Nat. Mater., 2016, 14: 553
doi: 10.1038/nmat4297
[10] Hufnagel T C, Schuh C A, Falk M L. Deformation of metallic glasses: Recent developments in theory, simulations, and experiments [J]. Acta Mater., 2016, 109: 375
doi: 10.1016/j.actamat.2016.01.049
[11] Huang H G, Ke H B, Zhang P, et al. U-based binary strong glass forming system [J]. J. Non-Cryst. Solids, 2019, 511: 68
doi: 10.1016/j.jnoncrysol.2018.12.041
[12] Huang H G, Ke H B, Liu T W, et al. Effect of minor alloying on the glass forming ability of U-Co alloy [J]. Rare Met. Mater. Eng., 2018, 47: 990
黄火根, 柯海波, 刘天伟等. 微合金化对U-Co金属玻璃形成能力的影响 [J]. 稀有金属材料与工程, 2018, 47: 990
[13] Xu H Y, Ke H B, Huang H G, et al. U-based metallic glasses with superior glass forming ability [J]. J. Nucl. Mater., 2018, 499: 372
doi: 10.1016/j.jnucmat.2017.11.043
[14] Huang H G, Ke H B, Zhang P, et al. U-involved sphere-dispersed metallic glass matrix composites [J]. Mater. Des., 2018, 157: 371
doi: 10.1016/j.matdes.2018.07.062
[15] Ke H B, Xu H Y, Huang H G, et al. Non-isothermal crystallization behavior of U-based amorphous alloy [J]. J. Alloys Compd., 2017, 691: 436
doi: 10.1016/j.jallcom.2016.08.252
[16] Huang H G, Xu H Y, Zhang P G, et al. U-Cr binary alloys with anomalous glass-forming ability [J]. Acta Metall. Sin., 2017, 53: 233
doi: 10.11900/0412.1961.2016.00275
黄火根, 徐宏扬, 张鹏国等. 具有反常非晶形成能力的U-Cr二元合金 [J]. Acta Metall. Sin., 2017, 53: 233
doi: 10.11900/0412.1961.2016.00275
[17] Huang H G, Ke H B, Zhang P, et al. Effect of minor alloying on the glass formation of U-based alloys [J]. J. Alloys Compd., 2016, 688: 599
doi: 10.1016/j.jallcom.2016.07.229
[18] Huang H G, Ke H B, Wang Y M, et al. Stable U-based metallic glasses [J]. J. Alloys Compd., 2016, 684: 75
doi: 10.1016/j.jallcom.2016.05.124
[19] Huang H G, Wang Y M, Chen L, et al. Study on formation and corrosion resistance of amorphous alloy in U-Co system [J]. Acta Metall. Sin., 2015, 51: 623
黄火根, 王英敏, 陈 亮等. U-Co系非晶合金的形成与耐蚀性研究 [J]. 金属学报, 2015, 51: 623
[20] Ke H B, Zhang P, Sun B A, et al. Dissimilar nanoscaled structural heterogeneity in U-based metallic glasses revealed by nanoindentation [J]. J. Alloys Compd., 2019, 788: 391
doi: 10.1016/j.jallcom.2019.02.256
[21] Xu H Y, Ke H B, Huang H G, et al. Nanoindentation creep behavior of U65Fe30Al5 amorphous alloy [J]. Acta Metall. Sin., 2017, 53: 817
doi: 10.11900/0412.1961.2016.00322
徐宏扬, 柯海波, 黄火根等. U65Fe30Al5非晶合金的纳米压痕蠕变行为研究 [J]. 金属学报, 2017, 53: 817
doi: 10.11900/0412.1961.2016.00322
[22] Ke H B, Pu Z, Zhang P, et al. Research progress in U-based amorphous alloys [J]. Acta Phys. Sin., 2017, 66: 176104
柯海波, 蒲 朕, 张 培等. 铀基非晶合金的发展现状 [J]. 物理学报, 2017, 66: 176104
doi: 10.7498/aps.66.176104
[23] Giessen B C, Elliott R O. Properties of metallic glasses containing actinide metals: I. Thermal properties of U-M glasses (M=V, Cr, Mn, Fe, Co, and Ni) [A]. Proceedings of the 3rd International Conference on Rapid Quenching [C]. Brighton, UK: The Metals Society, 1978: 406
[24] Elliott R O, Giessen B C. On the formation of metallic glasses based on U, Np or Pu [J]. Acta Mater., 1982, 30: 785
doi: 10.1016/0001-6160(82)90076-1
[25] Drehman A J, Poon S J. Anomalous glass-forming ability of uranium-based alloys [J]. J. Non-Cryst. Solids, 1985, 76: 321
doi: 10.1016/0022-3093(85)90008-0
[26] Wang W H. The nature and properties of amorphous matter [J]. Prog. Phys. 2013, 33: 177
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33: 177
[27] Highmore R J, Greer A L. Eutectics and the formation of amorphous alloys [J]. Nature, 1989, 339: 363
doi: 10.1038/339363a0
[28] Wittenberg L J, Ofte D, Curtiss C F. Fluid flow of liquid plutonium alloys in an oscillating-cup viscosimeter [J]. J. Chem. Phys., 1968, 48: 3253
doi: 10.1063/1.1669599
[29] Wittenberg L J, DeWitt R. Volume contraction during melting; Emphasis on lanthanide and actinide metals [J]. J. Chem. Phys., 1972, 56: 4526
doi: 10.1063/1.1677899
[30] Sun M H, Geng H R, Bian X F, et al. Abnormal changes in aluminum viscosity and its relationship with the microstructure of melts [J]. Acta Metall. Sin., 2000, 36: 1134
孙民华, 耿浩然, 边秀房等. Al熔体粘度的突变点及与熔体微观结构的关系 [J]. 金属学报, 2000, 36: 1134
[31] Wittenberg L J, DeWitt R, Takeuchi S. Viscosity of liquid rare-earth and actinide metals [A]. Proceedings of Conference on the Properties of Liquid Metals [C]. London, UK: Taylor and Francis, 1973: 555
[32] Scheidt E W, Riesemeier H, Lüders K, et al. Influence of 5f electrons on transport properties in uranium-based metallic glasses [J]. J. Alloys Compd., 1992, 183: 116
doi: 10.1016/0925-8388(92)90736-S
[33] Springell R, Wilhelm F, Rogalev A, et al. Polarization of U 5f states in uranium multilayers [J]. Phys. Rev., 2008, 77B: 064423
[1] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[2] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[3] ZHANG Lei, SHI Tao, HUANG Huogen, ZHANG Pei, ZHANG Pengguo, WU Min, FA Tao. Phase Separation and Solidification Sequence of Uranium-Based Amorphous Composites[J]. 金属学报, 2022, 58(2): 225-230.
[4] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[5] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[6] SUN Xiaojun, HE Jie, CHEN Bin, ZHAO Jiuzhou, JIANG Hongxiang, ZHANG Lili, HAO Hongri. Effect of Fe Content on the Microstructure, Electrical Resistivity, and Nanoindentation Behavior of Zr60Cu40-xFex Phase-Separated Metallic Glasses[J]. 金属学报, 2021, 57(5): 675-683.
[7] ZHANG Nizhen, MA Xindi, GENG Chuan, MU Yongkun, SUN Kang, JIA Yandong, HUANG Bo, WANG Gang. Effect of Adding Ag on the Nanoindentation Behavior of Cu-Zr-Al-Based Metallic Glass[J]. 金属学报, 2021, 57(4): 567-574.
[8] GUAN Pengfei, SUN Shengjun. Atomic-Level Study in the Structure and Its Instability of Metallic Glasses[J]. 金属学报, 2021, 57(4): 501-514.
[9] BI Jiazi, LIU Xiaobin, LI Ran, ZHANG Tao. Tribological Properties of Polyalphaolefin (PAO6) Lubricant Modified with Particles Additives of Metallic Glass[J]. 金属学报, 2021, 57(4): 559-566.
[10] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
[11] LI Ning, HUANG Xin. Recent Advances on 3D Printed Bulk Metallic Glasses[J]. 金属学报, 2021, 57(4): 529-541.
[12] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[13] QU Ruitao, WANG Xiaodi, WU Shaojie, ZHANG Zhefeng. Research Progress in Shear Banding Deformation and Fracture Mechanisms of Metallic Glasses[J]. 金属学报, 2021, 57(4): 453-472.
[14] HU Xiang, GE Jiacheng, LIU Sinan, FU Shu, WU Zhenduo, FENG Tao, LIU Dong, WANG Xunli, LAN Si. Combustion Mechanism of Fe-Nb-B-Y Amorphous Alloys with an Anomalous Exothermic Phenomenon[J]. 金属学报, 2021, 57(4): 542-552.
[15] ZENG Qiaoshi, YIN Ziliang, LOU Hongbo. Polyamorphic Transitions in Metallic Glasses[J]. 金属学报, 2021, 57(4): 491-500.
No Suggested Reading articles found!