Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (2): 249-256    DOI: 10.11900/0412.1961.2019.00203
Current Issue | Archive | Adv Search |
Molecular Dynamics Simulation of DisplacementCascades in Nb
MA Xiaoqiang1,2,YANG Kunjie3,XU Yuqiong1,2(),DU Xiaochao1,2,ZHOU Jianjun1,2,XIAO Renzheng1,2
1. College of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002, China
2. Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
3. College of Nuclear Equipment and Nuclear Engineering, Yantai University, Yantai 264005, China
Cite this article: 

MA Xiaoqiang,YANG Kunjie,XU Yuqiong,DU Xiaochao,ZHOU Jianjun,XIAO Renzheng. Molecular Dynamics Simulation of DisplacementCascades in Nb. Acta Metall Sin, 2020, 56(2): 249-256.

Download:  HTML  PDF(6060KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Refractory metal Nb and its alloys are considered as promising materials in fusion reactor, where they are required to withstand a high neutron irradiation, because their excellent high temperature properties such as high temperature strength, good thermal conductivity and compatibility with most liquid metal coolants. The defects are created in atomic displacement cascade from the primary state of damage and subsequent evolution gives rise to important change in their microstructures and engineering properties. However, the evolution and aggregation of induced radiation defects in atomic level cannot be observed by experiment so far. In this work, molecular dynamics (MD) method is used to explore the microstructural formation and evolution of defects from the atomic displacement cascades in bcc-Nb. In the simulation, the energy range of primary knock-on atom (PKA) is chosen 5~50 keV and the simulation temperature 300 K. It is observed that the most of defects in bcc Nb are point defects at different PKA energies. The vacancy cluster rate varies from 17% to 35% and self-interstitial cluster rate varies from 23% to 40%. As the PKA energy increasing, vacancies usually tend to form larger clusters. The self-interstitial atoms form a dumbbell structure along the direction <110>. The 1/2<111> intermittent dislocation loop and <100> vacancy dislocation loop are produced when the PKA energy greater than 30 keV. The quantitative relationship between energy of PKA (EPKA) and number of survivals Frenkel pairs (NFP) is fitted by a power function with different parameters at low-energies (5~30 keV) and the high-energies (30~50 keV).

Key words:  Nb      molecular dynamics (MD)      displacement cascade      Frenkel pair      defect cluster     
Received:  20 June 2019     
ZTFLH:  TG132  
Fund: Special Fund for Talents of China Three Gorges University(2016KJX03);Open Science Foundation of Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance(2019KJX08)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00203     OR     https://www.ams.org.cn/EN/Y2020/V56/I2/249

EPKA / keVCell sizeNumber of atomSimulation time / ps
520a×20a×20a1600020
1020a×20a×20a1600020
2030a×30a×30a5400025
3040a×40a×40a12800025
4060a×60a×60a43200030
5080a×80a×80a102400040
Table 1  Cell size and number of atoms in the atomic displacement cascade simulation with different primary knock-on atom (PKA) energies (EPKA)
Fig.1  The number of Frenkel pairs induced by 30 keV PKA moving in [235] direction as a function of simulated time (Insets show the simulated snapshots of local structures near the cascade center, t—the time of simulation, black lines in insets show the size of the vacancy zone, PKA—primary knock-on atom)
Fig.2  Visual screenshots of defect evolution induced by 30 keV PKA moving in [235] direction during displacement cascades (The blue, yellow and red atoms represent vacancy, single interstitial atom and double interstitial atom, respectively)(a) t=0.051 ps (b) t=0.11 ps (c) t=0.38 ps (d) t=1.49 ps(e) t=5.09 ps (f) t=10.09 ps (g) t=15.09 ps (h) t=25.00 ps
Fig.3  The number of Frenkel pairs as a function of simulated time for different PKA energies (EPKA)
Fig.4  Curves of average number of surviving Frenkel pairs and cascade efficiency vsEPKA
Fig.5  Curves of vacancy cluster and interstitial cluster formation rates vsEPKA
Fig.6  The number of interstitial clusters (a) and vacancy cluster (b) formed in each cascade as a function of the corresponding EPKA
[1] Demkowicz M J, Misra A, Caro A. The role of interface structure in controlling high helium concentrations [J]. Curr. Opin.Solid State Mater. Sci., 2012, 16(3): 101
[2] Demkowicz M J, Hoagland R G, Hirth J P. Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites [J]. Phys. Rev. Lett., 2008, 100: 136102
[3] Hattar K, Demkowicz M J, Misra A, et al. Arrest of He bubble growth in Cu-Nb multilayer nanocomposites [J]. Scr. Mater., 2008, 58: 541
[4] Allen T R, Stoller R E, Yamanaka S. Comprehensive Nuclear Materials [M]. Vol.4, Amsterdam: Elsevier Ltd., 2012: 182
[5] Buckman R W Jr. Nuclear space power systems materials requirements [A]. AIP Conference Proceedings [C]. Am. Inst. Phys., 2004, 699: 815
[6] Tavassoli A A F. Present limits and improvements of structural materials for fusion reactors—A review [J]. J. Nucl. Mater., 2002, 302(2-3): 73
[7] Goldberg D C, Dicker G, Worcester S A. Niobium and niobium alloys in nuclear power [J]. Nucl. Eng. Des., 1972, 22: 124
[8] Was G S. Fundamentals of Radiation Materials Science: Metals and Alloys [M]. 2nd Ed., New York: Springer, 2017: 167
[9] Ma X Q, Yuan D Q, Xia H H, et al. Molecular dynamics simulation of evolution of defect and temperature effect in irradiated 3C-SiC [J]. Atomic Energy Sci. Technol., 2016, 50: 219
[9] (马小强,袁大庆,夏海鸿,等. 3C-SiC辐照诱发缺陷演化及温度效应分子动力学模拟 [J]. 原子能科学技术, 2016, 50: 219)
[10] Ma-Thai C C, Bacon D J. Relaxed vacancy formation and surface energies in b.c.c transition metals [J]. Philos. Mag., 1985, 52A: 1
[11] Ackland G J, Thetford R. An improved N-body semi-empirical model for body-centred cubic transition metals [J]. Philos. Mag., 1987, 56A: 15
[12] Lee B J, Baskes M I, Kim H, et al. Second nearest-neighbor modified embedded atom method potentials for bcc transition metals [J]. Phys. Rev., 2001, 64B: 184102
[13] Plimpton S. Fast parallel algorithms for short-range molecular dynamics [J]. J. Comput. Phys., 1995, 117: 1
[14] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool [J]. Model. Simul. Mater. Sci. Eng., 2010, 18: 015012
[15] Tikhonchev M, Svetukhin V, Kapustin P. Primary radiation damage of Zr-0.5%Nb binary alloy: Atomistic simulation by molecular dynamics method [J]. Model. Simul. Mater. Sci. Eng., 2017, 25: 065017
[16] Lin D Y, Wang S S, Peng D L, et al. An n-body potential for a Zr-Nb system based on the embedded-atom method [J]. J. Phys: Condens. Matter, 2013, 25: 105404
[17] Ziegler J F, Biersack J P, Ziegler M D. SRIM—The Stopping and Range of Ions in Matter [M]. Chester: SRIM Co., 2008: 2
[18] Mendelev M I, Ackland G J. Development of an interatomic potential for the simulation of phase transformations in zirconium [J]. Philos. Mag. Lett., 2007, 87: 349
[19] Was G S. Fundamentals of Radiation Materials Science: Metals and Alloys [M]. 2nd Ed., New York: Springer, 2016: 127
[20] Cai J, Lu D G, Ma Y, et al.Structure evolution of defects in bcc iron by dislacement cascade: Molecular dynamics simulation [J]. Chin. J. Comput. Phys., 2011, 28: 915
[20] (蔡 军,陆道纲,马 雁等. 分子动力学模拟bcc铁中级联碰撞产生的缺陷结构及其演变 [J]. 计算物理, 2011, 28: 915)
[21] Chen W J, Lei J H. The molecular dynamics based research on the displacement cascades in zirconium [J]. J. Southwest Univ. Sci. Technol., 2017, 32(1): 101
[21] (陈文杰,雷洁红. 金属锆中离位级联碰撞的分子动力学模拟 [J]. 西南科技大学学报, 2017, 32(1): 101)
[22] Cao H, He X F, Wang D J, et al. Molecular dynamics simulation of displacement cascades in α-iron at different temperatures [J]. Atomic Energy Sci. Technol., 2019, 53: 487
[22] (曹 晗, 贺新福, 王东杰等. 不同温度下α-Fe中级联碰撞分子动力学模拟研究 [J]. 原子能科学技术, 2019, 53: 487)
[23] Yao M, Cui W, Wang X D, et al. Molecular dynamics simulation of initial radiation damage in tungsten [J]. Acta Metall., 2015, 51: 724
[23] (姚 曼, 崔 薇, 王旭东等. W辐照损伤初期的分子动力学研究 [J]. 金属学报, 2015, 51: 724)
[24] Bj?rkas C, Nordlund K, Dudarev S. Modelling radiation effects using the ab-initio based tungsten and vanadium potentials [J]. Nucl. Instrum. Methods Phys. Res., 2009, 267B: 3204
[25] Soneda N, Ishino S, de la Rubia T. Vacancy loop formation by ''cascade collapse'' in α-Fe: A molecular dynamics study of 50 keV cascades [J]. Philos. Mag. Lett., 2001, 81: 649
[26] Averback R S, de la Rubia T D, Benedek R. Dynamics and structure of energetic displacement cascades [J]. Nucl. Instrum.Methods Phys. Res., 1988, 33B: 693
[27] Norgett M J, Robinson M T, Torrens I M. A proposed method of calculating displacement dose rates [J]. Nucl. Eng. Des., 1975, 33: 50
[28] Li X Y, Xu Y C, Duan G H, et al. On the possibility of universal interstitial emission induced annihilation in metallic nanostructures [J]. J. Nucl. Mater., 2018, 500: 199
[29] Duan G H, Li X Y, Sun J J, et al. Surface-structure dependence of healing radiation-damage mechanism in nanoporous tungsten [J]. J. Nucl. Mater., 2018, 498: 362
[30] Bacon D J, Calder A F, Gao F, et al. Computer simulation of defect production by displacement cascades in metals [J]. Nucl. Instrum.Methods Phys. Res., 1995, 102B: 37
[31] Allen T R, Stoller R E, Yamanaka S. Comprehensive Nuclear Materials [M]. Vol.1, Amsterdam: Elsevier Ltd., 2012: 312
[32] Voskoboinikov R E, Osetsky Y N, Bacon D J. Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics [J]. J. Nucl. Mater., 2008, 377: 385
[33] Gao F, Bacon D J, Howe L M, et al. Temperature-dependence of defect creation and clustering by displacement cascades in α-zirconium [J]. J. Nucl. Mater., 2001, 294: 288
[34] Selby A P, Xu D H, Juslin N, et al. Primary defect production by high energy displacement cascades in molybdenum [J]. J. Nucl. Mater., 2013, 437: 19
[35] Cerdeira M A, Palacios S L, González C, et al. Ab initio simulations of the structure, energetics and mobility of radiation-induced point defects in bcc Nb [J]. J. Nucl. Mater., 2016, 478: 185
[1] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[4] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[5] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[6] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[7] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Lüders-Like Deformation and Stress Transfer Behavior in an In Situ NiTi-NbTi Composite[J]. 金属学报, 2021, 57(7): 921-927.
[8] WANG Mingkang, YUAN Junhao, LIU Yufeng, WANG Qing, DONG Chuang, ZHANG Zhongwei. Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys[J]. 金属学报, 2021, 57(1): 95-102.
[9] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[10] QIAN Yue,SUN Rongrong,ZHANG Wenhuai,YAO Meiyi,ZHANG Jinlong,ZHOU Bangxin,QIU Yunlong,YANG Jian,CHENG Guoguang,DONG Jianxin. Effect of Nb on Microstructure and Corrosion Resistance of Fe22Cr5Al3Mo Alloy[J]. 金属学报, 2020, 56(3): 321-332.
[11] Ling LI,Shenglian YAO,Xiaoli ZHAO,Jiajia YANG,Yexi WANG,Luning WANG. Fabrication and Properties of Anodic Oxide Nanotubular Arrays on Zr-17Nb Alloy[J]. 金属学报, 2019, 55(8): 1008-1018.
[12] Zhengguan LU,Jie WU,Lei XU,Xiaoxiao CUI,Rui YANG. Ring Rolling Forming and Properties of Ti2AlNb Special Shaped Ring Prepared by Powder Metallurgy[J]. 金属学报, 2019, 55(6): 729-740.
[13] Chunbo LAN,Jianeng LIANG,Yuanxia LAO,Dengfeng TAN,Chunyan HUANG,Xianzhong MO,Jinying PANG. Anomalous Thermal Expansion Behavior of Cold-RolledTi-35Nb-2Zr-0.3O Alloy[J]. 金属学报, 2019, 55(6): 701-708.
[14] Yajun HUI, Hui PAN, Kun LIU, Wenyuan LI, Yang YU, Bin CHEN, Yang CUI. Strengthening Mechanism of 600 MPa Grade Nb-Ti Microalloyed High Formability Crossbeam Steel[J]. 金属学报, 2017, 53(8): 937-946.
[15] Xianling HE,Gengwei YANG,Xinping MAO,Chibin YU,Chuanli DA,Xiaolong GAN. Effect of Nb on the Continuous Cooling Transformation Rule and Microstructure, Mechanical Properties of Ti-Mo Bearing Microalloyed Steel[J]. 金属学报, 2017, 53(6): 648-656.
No Suggested Reading articles found!