Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (1): 119-128    DOI: 10.11900/0412.1961.2019.00217
Research paper Current Issue | Archive | Adv Search |
Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand
WANG Li1,DONG Chaofang1(),ZHANG Dawei1,SUN Xiaoguang2,Chowwanonthapunya Thee3,MAN Cheng4,XIAO Kui1,LI Xiaogang1()
1. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2. CRRC Qingdao Sifang Co. , Ltd. , Qingdao 266111, China
3. Faculty of International Maritime Studies, Kasetsart University, Chonburi 20230, Thailand
4. School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
Cite this article: 

WANG Li,DONG Chaofang,ZHANG Dawei,SUN Xiaoguang,Chowwanonthapunya Thee,MAN Cheng,XIAO Kui,LI Xiaogang. Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand. Acta Metall Sin, 2020, 56(1): 119-128.

Download:  HTML  PDF(27368KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the rapid development of rail transit, high-speed trains are gradually exported to Southeast Asian countries. Aluminum alloy is widely used as a structural material such as train body and rail beam in high-speed trains, so that it is important to study the corrosion behavior of different aluminum alloy in Southeast Asia. The exposure test was conducted on 5083, 6063 and 7020 aluminum alloys in Bangkok, Thailand for 1 a. SEM, XPS, electrochemical experiment and scanning Kelvin probe force microscopy (SKPFM) were used to study the corrosion morphology and corrosion mechanism of different aluminum alloys. The results showed that the corrosion potential of 6063 aluminum alloys were relatively high, about -0.66 V (vs SCE), and the corrosion morphologies were relatively mild, which was due to less alloy elements such as Mg, Si and Fe in the 6063 aluminum alloys. The corrosion rate of 6063 aluminum alloys in Bangkok, Thailand was about 0.7 g/(m2·a). 7020 aluminum alloy contains more Zn elements, and the corrosion potential was about -0.78 V (vs SCE). The corrosion rate was the highest, about 3.26 g/(m2·a). The second phase of Fe-Si-Al or Fe-Si(Mn)-Al formed in the microstructure of the three aluminum alloys. The surface potential of the second phase was higher than that of the matrix, about 225~280 mV. In the atmospheric environment, the second phase acted as the cathode phase, and the surrounding matrix Al dissolved preferentially. The second phase fell off and formed a pit.

Key words:  aluminum alloy      Bangkok Thailand      atmospheric corrosion      pitting     
Received:  03 July 2019     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program of China(2017YFB0702300);National Natural Science Foundation of China(51871028);National Material Environmental Corrosion Platform Project(2005DKA10400)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00217     OR     https://www.ams.org.cn/EN/Y2020/V56/I1/119

Al alloySiMnCrCuTiFeMgZnAl
50830.0440.600.0770.0300.0150.224.220.0086Bal.
60630.600.180.120.0140.0380.150.650.01Bal.
7020<0.100.450.160.100.0470.0961.144.58Bal.
Table 1  Chemical compositions of experimental materials (mass fraction / %)
Fig.1  EBSD images of 5083 (a), 6063 (b) and 7020 (c) Al alloys
Fig.2  The macro morphologies (a~c) and OM images (d~f) of 5083 (a, d)、6063 (b, e) and 7020 (c, f) Al alloys exposured in atmospheric enviroment in Bangkok area for 1 a
Fig.3  The micro surface (a~c) and cross-sectional (d~f) SEM images of 5083 (a, d), 6063 (b, e) and 7020 (c, f) Al alloys exposured in atmospheric enviroment in Bangkok area for 1 a
Fig.4  Polarization curves (in 0.1 mol/L NaCl solution at room temperature) of different Al alloys exposed in Bangkok area for 1 a (Epit—pitting potential, Ecorr—corrosion potential)
Fig.5  Electrochemical impedance spectroscopy (EIS, in 0.1 mol/L NaCl solution at room temperature) of 5083, 6063和7020 Al alloys exposed in Bangkok area for 1 a(a) Nyquist plot (b) Bode plot
Fig.6  Electrochemical equivalent circuit of EIS (Re—solution resistance, CPE1—electrochemical response of the passivation film, R1—hindrance of passivation film to ion migration, CPE2—electrochemical potential of the electric double layer, R2—corresponding charge transfer resistance, Q and n are the admittance value and fitted exponential of CPE, respectively)

Al alloy

Re

Ω·cm2

R1

Ω·cm2

Q1

Ω-1·cm-2·sn1

R2

Ω·cm2

Q2

Ω-1·cm-2·sn2

508325.312.249×1067.041×10-665.602.633×10-6
606366.084.077×1066.094×10-713.697.406×10-6
702065.968.233×1056.094×10-654.697.573×10-6
Table2  Values of parameters observed from the EIS diagrams
Fig.7  XPS results of 5083, 6063 and 7020 Al alloys(a) Al2p (b) O1s (c) Fe2p (d) Mg1s (e) Zn2p
Fig.8  Pitting morphologies and surface scan results of 5083 (a), 6063 (b) and 7020 (c) Al alloys
Fig.9  SEM image of Fe-Si(Mn)-Al (a) and EDS surface scan results of Al (b), Si (c), Fe (d) and Mn (e), and scanning Kelvin probe force microscopy (SKPFM) results (surface potential (f), surface potential of Line 1 in Fig.9f (g))
Fig.10  SEM image of Fe-Si-Al (a), and EDS surface scan results of Al (b), Si (c) and Fe (d), and SKPFM result (surface potential (e), surface potential of Line 2 in Fig.10e (f))
[1] Huang B Y, Li C G, Shi L K, et al. Non-Ferrous Metal Materials Manual (I) [M]. Beijing: Chemical Industry Press, 2009: 109
[1] (黄伯云, 李成功, 石开力等. 有色金属材料手册(上) [M]. 北京: 化学工业出版社, 2009: 109)
[2] Yasakau K A, Zheludkevich M L, Ferreira M G S. Intermetallic Matrix Composites: Properties and Applications [M]. Sawston, Cambridge: Woodhead Publishing, 2018: 425
[3] Liu Y J, Wang Z Y, Ke W. Corrosion behavior of 2024-T3 aluminum alloy in simulated marine atmospheric environment [J]. Chin. J. Nonferrous Met., 2013, 23: 1208
[3] (刘艳洁, 王振尧, 柯 伟. 2024-T3铝合金在模拟海洋大气环境中的腐蚀行为 [J]. 中国有色金属学报, 2013, 23: 1208)
[4] Xiao Y D, Wang G Y, Li X G. Corrosion behavior of atmospheric environment and corrosion feature of materials in our western area [J]. J. Chin. Soc. Corros. Prot., 2003, 23: 248
[4] (萧以德, 王光雍, 李晓刚. 我国西部地区大气环境腐蚀性及材料腐蚀特征 [J]. 中国腐蚀与防护学报, 2003, 23: 248)
[5] Wang L, Guo C Y, Xiao K, et al. Corrosion behavior of carbon steels Q235 and Q450 in dry hot atmosphere at Turpan district for four years [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 431
[5] (王 力, 郭春云, 肖葵等. Q235和Q450钢在吐鲁番干热大气环境中长周期暴晒时的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2018, 38: 431)
[6] Grimm M, Lohmüller A, Singer R F, et al. Influence of the microstructure on the corrosion behaviour of cast Mg-Al alloys [J]. Corros. Sci., 2019, 155: 195
[7] van Beek H J, Mittemeijer E J. Amorphous and crystalline oxides on aluminium [J]. Thin Solid Films, 1984, 122: 131
[8] Gao M, Sun Z H, Liu M, et al. Atmospheric corrosion behavior of 7B04 aluminum alloy in the presence of NaCl and SO2 [J]. Environ. Technol., 2016, 34(5): 9
[8] (高 蒙, 孙志华, 刘 明等. 7B04铝合金在NaCl沉积与SO2环境下的大气腐蚀行为 [J]. 环境技术, 2016, 34(5): 9)
[9] Zhou H R, Li X G, Dong C F. Review of atmospheric corrosion behavior and mechanism of aluminum alloys and it's anodic film [J]. Equip. Environ. Eng., 2006, 3(1): 1
[9] (周和荣, 李晓刚, 董超芳. 铝合金及其氧化膜大气腐蚀行为与机理研究进展 [J]. 装备环境工程, 2006, 3(1): 1)
[10] Fratila-Apachitei L E, Terryn H, Skeldon P, et al. In?uence of substrate microstructure on the growth of anodic oxide layers [J]. Electrochim. Acta, 2004, 49: 1127
[11] Wang B B, Wang Z Y, Cao G W, et al. Localized corrosion of aluminum alloy 2024 exposed to salt lake atmospheric environment in western China [J]. Acta Metall. Sin., 2014, 50: 49
[11] (王彬彬, 王振尧, 曹公望等. 2024铝合金在中国西部盐湖大气环境中的局部腐蚀行为 [J]. 金属学报, 2014, 50: 49)
[12] Wei X, Dong C F, Chen Z H, et al. A DFT study of the adsorption of O2 and H2O on Al(111) surfaces [J]. RSC Adv., 2016, 6: 56303
[13] Man C, Dong C F, Xiao K, et al. The combined effect of chemical and structural factors on pitting corrosion induced by MnS-(Cr, Mn, Al)O duplex inclusions [J]. Corrosion, 2018, 74: 312
[14] Tanem B S, Svenningsen G, M?rdalen J. Relations between sample preparation and SKPFM Volta potential maps on an EN AW-6005 aluminium alloy [J]. Corros. Sci., 2005, 47: 1506
[15] Zheng C B, Li C L, Yi G, et al. Corrosion behavior of high-strength aluminum alloys 6061 and 7075 in simulated marine atmosphere [J]. Mater. Prot., 2014, 47(6): 38
[15] (郑传波, 李春岭, 益 帼等. 高强铝合金6061和7075在模拟海洋大气环境中的腐蚀行为 [J]. 材料保护, 2014, 47(6): 38)
[16] Suo X N, Guo C, Kong D C, et al. Corrosion behaviour of TiN and CrN coatings produced by magnetron sputtering process on aluminium alloy [J]. Int. J. Electrochem. Sci., 2019, 14: 826
[17] Chen M A, Ou Y C, Fu Y H, et al. Effect of friction stirred Al-Fe-Si particles in 6061 aluminum alloy on structure and corrosion performance of MAO coating [J]. Surf. Coat. Technol., 2016, 304: 85
[18] Man C, Dong C F, Cui Z Y, et al. A comparative study of primary and secondary passive films formed on AM355 stainless steel in 0.1 M NaOH [J]. Appl. Surf. Sci., 2018, 427: 763
[19] Luo H, Yu Q, Dong C F, et al. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel [J]. Corros. Sci., 2018, 139: 185
[20] Chung I C, Chung C K, Su Y K. Effect of current density and concentration on microstructure and corrosion behavior of 6061 Al alloy in sulfuric acid [J]. Surf. Coat. Technol., 2017, 313: 299
[21] Nejadseyfi O, Shokuhfar A, Dabiri A, et al. Combining equal-channel angular pressing and heat treatment to obtain enhanced corrosion resistance in 6061 aluminum alloy [J]. J. Alloys Compd., 2015, 648: 912
[22] de Miera M S, Curioni M, Skeldon P, et al. The behaviour of second phase particles during anodizing of aluminium alloys [J]. Corros. Sci., 2010, 52: 2489
[23] Huang L P, Chen K H, Li S. Influence of grain-boundary pre-precipitation and corrosion characteristics of inter-granular phases on corrosion behaviors of an Al-Zn-Mg-Cu alloy [J]. Mater. Sci. Eng., 2012, B177: 862
[24] Esfahani Z, Rahimi E, Sarvghad M, et al. Correlation between the histogram and power spectral density analysis of AFM and SKPFM images in an AA7023/AA5083 FSW joint [J]. J. Alloys Compd., 2018, 744: 174
[25] Ornek C, Engelberg D L. SKPFM measured Volta potential correlated with strain localisation in microstructure to understand corrosion susceptibility of cold-rolled grade 2205 duplex stainless steel [J]. Corros. Sci., 2015, 99: 164
[1] LI Xiaohan, CAO Gongwang, GUO Mingxiao, PENG Yunchao, MA Kaijun, WANG Zhenyao. Initial Corrosion Behavior of Carbon Steel Q235, Pipeline Steel L415, and Pressure Vessel Steel 16MnNi Under High Humidity and High Irradiation Coastal-Industrial Atmosphere in Zhanjiang[J]. 金属学报, 2023, 59(7): 884-892.
[2] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[3] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[4] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[5] SONG Jialiang, JIANG Zixue, YI Pan, CHEN Junhang, LI Zhaoliang, LUO Hong, DONG Chaofang, XIAO Kui. Corrosion Behavior and Product Evolution of Steel for High-Speed Railway Bogie G390NH in Simulated Marine and Industrial Atmospheric Environment[J]. 金属学报, 2023, 59(11): 1487-1498.
[6] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[7] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[8] SONG Wenshuo, SONG Zhuman, LUO Xuemei, ZHANG Guangping, ZHANG Bin. Fatigue Life Prediction of High Strength Aluminum Alloy Conductor Wires with Rough Surface[J]. 金属学报, 2022, 58(8): 1035-1043.
[9] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[10] SUN Yangting, LI Yiwei, WU Wenbo, JIANG Yiming, LI Jin. Effect of Inclusions on Pitting Corrosion of C70S6 Non-Quenched and Tempered Steel Doped with Ca and Mg[J]. 金属学报, 2022, 58(7): 895-904.
[11] GAO Chuan, DENG Yunlai, WANG Fengquan, GUO Xiaobin. Effect of Creep Aging on Mechanical Properties of Under-Aged 7075 Aluminum Alloy[J]. 金属学报, 2022, 58(6): 746-759.
[12] TIAN Ni, SHI Xu, LIU Wei, LIU Chuncheng, ZHAO Gang, ZUO Liang. Effect of Pre-Tension on the Fatigue Fracture of Under-Aged 7N01 Aluminum Alloy Plate[J]. 金属学报, 2022, 58(6): 760-770.
[13] SU Kaixin, ZHANG Jiwang, ZHANG Yanbin, YAN Tao, LI Hang, JI Dongdong. High-Cycle Fatigue Properties and Residual Stress Relaxation Mechanism of Micro-Arc Oxidation 6082-T6 Aluminum Alloy[J]. 金属学报, 2022, 58(3): 334-344.
[14] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[15] WANG Guanjie, LI Kaiqi, PENG Liyu, ZHANG Yiming, ZHOU Jian, SUN Zhimei. High-Throughput Automatic Integrated Material Calculations and Data Management Intelligent Platform and the Application in Novel Alloys[J]. 金属学报, 2022, 58(1): 75-88.
No Suggested Reading articles found!